КулЛиб - Скачать fb2 - Читать онлайн - Отзывы
Всего книг - 406388 томов
Объем библиотеки - 537 Гб.
Всего авторов - 147245
Пользователей - 92480
Загрузка...

Впечатления

DXBCKT про Белозеров: Эпоха Пятизонья (Боевая фантастика)

Вторая часть (которую я собственно случайно и купил) повествует о продолжении ГГ первой книги (журналиста, чудом попавшего в «зону отчуждения», где эизнь его несколько раз «прожевала и выплюнула» уже в качестве сталкера).

Сразу скажу — несмотря на «уже привычный стиль» (изложения) эта книга «пошла гораздо легче» (чем часть первая). И так же надо сразу сказать — что все описанное (от слова) НИКАК не стыкуется с представлениями о «классической Зоне» (путь даже и в заявленном формате «Пятизонья»). Вообще (как я понял в данном издательстве, несмотря на «общую линейку») нет какого-либо определенного формата. Кто-то пишет «новоделы» в стиле «А.Т.Р.И.У.М.а», кто-то про «Пятизонье», а кто-то и вообще (просто) в жанре «постапокалипсис» (руководствуясь только своими личными представлениями).

Что касается конкретно этой книги — то автора «так несет по мутным волнам, бурных потоков фантазии»... что как-то (более-менее) четко охарактеризовать все происходящее с героем — не представляется возможным. Однако (стоит отметить) что несмотря на подобный подход — (благодаря автору) ГГ становится читателю как-то (уже) знакомым (или родным), и поэтому очередные... хм... его приключения уже не вызывают столь бурных (как ранее) обидных эскапад.

Видимо тут все дело связано как раз с ожиданием «принадлежности к жанру»... а поскольку с этим «определенные» проблемы, то и первой реакцией станеовится именно (читательское) неприятие... Между тем если подойти (ко всему написанному) с позиций многоплановости миров (и разных законов мироздания) в которых возможны ЛЮБЫЕ... Хм... действия... — то все повествование покажется «гораздо логичным», чем на первый (предвзятый) взгляд...

P.S И даже если «отойти» от «путешествий ГГ» по «мирам» — читателю (выдержавшему первую часть) будет просто интересна жизнь ГГ, который уже понял что «то что с ним было» и есть настоящая жизнь... А вот в «обыденной реальности» ему все обрыдло и... пусто. Не знаю как это более точно выразить, но видимо лучше (другого автора пишущего в жанре S.t.a.l.k.e.r) Н.Грошева (из книги «Шепот мертвых», СИ «Велес») это сказать нельзя:

«...Велес покинул отель, чувствуя нечто новое для себя. Ему было противно видеть этих людей. Он чувствовал омерзение от контакта с городом и его обитателями. Он чувствовал себя обманутым – тут все играли в какие-то глупые игры с какими-то глупыми, надуманными, полностью искусственными и противными самой сути человека, правилами. Но ни один их этих игроков никогда не жил. Они все существовали, но никогда не жили. Эти люди были так же мертвы, как и псы из точки: Четыре. Они ходили, говорили, ели и даже имели некоторые чувства, эмоции, но они были мертвы внутри. Они не умели быть стойкими, их можно было ломать и увечить. Они были просто мясом, не способным жить. Тот же Гриша, будь он тогда в деревеньке этой, пришлось бы с ним поступить как с Рубиком. Просто все они спят мёртвым сном: и эта сломавшаяся девочка и тот, кто её сломал – все они спят, все мертвы. Сидят в коробках городов и ни разу они не видели жизни. Они уверены, что их комфортный тёплый сон и есть жизнь, но стоит им проснуться и ужас сминает их разум, делает их визжащими, ни на что не годными существами. Рубик проснулся. Скинул сон и увидел чистую, лишённую любых наслоений жизнь – он впервые увидел её такой и свихнулся от ужаса...»

P.S.S Обобщая «все вышеизложенное» не могу отметить так же образовавшуюся тенденцию... Если про покупку первой части я даже не задумывался), на «второй» — все таки не пожалел потраченных денег... Ну а третью (при наличии) может быть даже и куплю))

Рейтинг: 0 ( 0 за, 0 против).
plaxa70 про Абрамов: Школьник из девяностых (СИ) (Фэнтези)

Сразу оценю произведение - картон, не тратьте свое время. Теперь о том, что наболело. Стараюсь не комментировать книги, которые не понравились или не соответствуют моему мировозрению (каждому свое, как говорится), именно КНИГИ, а не макулатуру. Но иной раз, прочитав аннотацию, думаешь, может быть сегодня скоротаю приятный вечерок. Хренушки. И время впустую потрачено, и настроение на нуле. И в очередной раз приходит понимание, что либеральные ценности, декларирующий принцип: говори - что хочешь, пиши - что хочешь, это просто помойная яма, в которую человек не лезет с довольным лицом, а благоразумно обходит стороной.
Дорогие авторы! Если вас распирает и вы не можете не писать, попросите хотя бы десяток знакомых оценить ваш труд. Пожалейте других людей. Ведь свобода - это не только право говорить и писать, что вздумается, но и ответственность за свои слова и действия.

Рейтинг: +2 ( 2 за, 0 против).
citay про Корсуньский: Школа волшебства (Фэнтези)

Не смог пройти дальше первых предложений. Очень образованный человек, путает термех с начертательной геометрией. Дальше тоже самое, может и хуже.

Рейтинг: +1 ( 1 за, 0 против).
DXBCKT про Хайнс: Последний бойскаут (Боевик)

Комментируемый рассказ-Последний бойскаут

Я бы наверное никогда не купил (специально) данную книгу, но совершенно она случайно досталась мне (довеском к собранию книг серии «БГ» купленных «буквально даром»). Данная книга (другого издательства — не того что представлена здесь) — почти клон «БГ» по сути, а на деле является (видимо) малоизвестной попыткой запечатлеть «восторги от экранизации» очередного супербоевика (что «так кружили голову» во времена «вечного счастья от видаков, кассет и БигМака»). Сейчас же, несмотря на то - что 90 % этих «рассказов» (по факту) являются «полной дичью» порой «ностальгические чуства» берут верх и хочется чего-нибудь «эдакого» в духе «раннего и нетленного»., хотя... по прошествии времени некоторые их этих «вечных нетленок» внезапно «рассыпаются прахом»)).

В данной книге описан «стандартный сюжет» об очередном (фактически) супергерое, который однажды взявшись за дело (ГГ по профессии детектив) не бросает его несмотря ни на что (гибель клиентки, угрозу смерти для себя лично и своей семьи, неоднократные «попытки зажмурить всех причастных» и заинтересованность в этом «неких верхов» (против которых обычно выступать «… что писать против ветра...»). Но наш герой «наплевал на это» и мчится... эээ... в общем мчится невзирая на «огонь преследователей», обвинение в убийстве (в котором наш ГГ разумеется не виновен, т.к его подставили) и визг полицейских сирен (копы то тоже «на хвосте»).

В общем... очень похоже на очередной супербестселлер того времени — «Последний киногерой». Все взрывается, стреляет, куда-то бежит... и... совсем непонятно как «это» вообще могло «вызывать восторг». Хотя... если смотреть — то вполне вероятно, но вот читать... Хм... как-то не очень)

Рейтинг: +1 ( 2 за, 1 против).
Stribog73 про Артюшенко: Шутка с питоном. Рассказы (Природа и животные)

Книжка хорошая, но не стоит всему, что в ней написано верить на 100%.
Так, читаем у автора: "ЭФА — небольшая, очень ядовитая змейка...". Это справедливо по отношению к песчаной эфе, обитающей в Южной Азии и Северной Африке. Песчаная эфа же, обитающая в пустынях и полупустынях Средней Азии и Казахстана слабоядовита. Её яд слабее даже яда степной гадюки. И меня кусала, и приятеля моего кусала - и ничего. Но змея агрессивная и не боится человека, в отличии, например, от гюрзы. Если эфа куда-то ползет и вы оказались у нее на пути - она не свернет, а попрет прямо на вас. Такая ее наглость, видимо, связана с тем, что эфа - рекордсмен среди змей по скорости укуса - 1/18 секунды. Как скорость удара кулаком хорошего чернопоясного каратиста. По этой причине ловить ее голыми руками - нереально, если вы только не Брюс Ли.
Гюрза же, хоть и самая ядовитая из змей СССР, совсем не агрессивна. Случаев столкновения нос к носу с ней сотни (например, рыбаков на берегах небольших озер Казахстана). В таких ситуациях надо просто замереть и не двигаться пока гюрза не уползет.
Песчаных удавчиков в полупустынях и пустынях Казахстана полным-полно, но поймать крупный экземпляр (50 см. и больше) удается довольно редко.
Медянка встречается не только на Украине, на Кавказе и в Западном Казахстане, но их полно, например, и в Поволжье.
Тем, кто заночевал в степи, не стоит особо опасаться, что к вам в палатку заползет змея. Гораздо больше шансов, что в палатку заберется какое-нибудь опасное членистоногое - фаланга, паук-волк, скорпион или даже каракурт. Кстати, фаланга хоть и не ядовита, но не брезгует питаться падалью, так что ее укус может иногда привести к серьезным последствиям.

P.S. А вот водяных ужей по берегам водоемов Казахстана - полно. Иногда просто кишмя.

P.P.S. Кому интересны рептилии Казахстана, посмотрите сайт https://reptilia.club/. Там много что есть, правда пока далеко не всё. Например, нет песчаной эфы, нет четырехполосого полоза, нет еще двух видов агам.

Рейтинг: +1 ( 3 за, 2 против).
greysed про Вэй: По дорогам Империи (Боевая фантастика)

в полне читабельно,парень из мира S-T-I-K-S попал в будущие средневековье , и так бывает

Рейтинг: +1 ( 1 за, 0 против).
Беседин. Второй про Шапко: Синдром веселья Плуготаренко (Современная проза)

Сложный пронзительный роман с неожиданной трагической развязкой. Единственный недостаток - автор грешит порой натурализмом. Однако мы как-то подзабыли, через что пришлось пройти нашим ребятам в Афганистане. Ставлю пятерку.

Рейтинг: +1 ( 1 за, 0 против).
загрузка...

Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт. (fb2)

- Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт. (и.с. Наука. Величайшие теории-26) 2.5 Мб, 121с. (скачать fb2) - Хайме Наварро

Настройки текста:




Jaume Navarro Наука. Величайшие теории: выпуск 26: Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.

Пер. с исп. — М.: Де Агостини, 2015. — 152 с.

ISSN 2409-0069

© Jaume Navarro, 2012 (текст)

© RBA Collecionables S.A., 2012

© ООО «Де Агостини», 2014-2015

Еженедельное издание

Введение

«Быть или не быть, вот в чем вопрос». Эту самую известную фразу в мировой литературе Шекспир вложил в уста загадочного принца Датского Гамлета. Герой книги, которую читатель держит в руках, Нильс Бор — не выдуманный персонаж, хотя многие моменты в его жизни напоминают скорее легенду. Этот физик (датчанин, как и Гамлет) не только повлиял на научную панораму своей страны, но и радикально изменил понимание атома и даже само представление о науке.

Быть или не быть? Бор, вероятно, задавался этим вопросом бесчисленное множество раз: когда, исследуя электроны и их орбиты, был вынужден ввести постоянную Планка для объяснения структуры атома; когда решил превратить Копенгаген в центр теоретической физики своего времени, несмотря на замечательные предложения, которые поступали ему из других стран; когда опроверг привычную идею, что наука позволяет нам узнать действительность; когда полемизировал с Альбертом Эйнштейном по поводу каузальности в физике; когда видел, как многие его коллеги и друзья оказывались жертвами политики Третьего рейха; когда сперва принял участие в создании атомной бомбы, а затем стал активистом ядерного разоружения.

Нильс Бор был одним из самых влиятельных и цельных физиков первой половины XX века, а может, даже самым выдающимся. Пусть нелегко сравнивать двух гениев такого масштаба, многие считают, что по значимости Бор превосходит Эйнштейна. Немецкий физик, чьи идеи произвели революцию в электродинамике, гравитации и космологии, был примером ученого-одиночки, в то время как Бор всегда работал с людьми и даже имел круг последователей.

Чем обычно занимается человек науки? Самый простой ответ на этот вопрос — «разгадыванием секретов Вселенной», но если бы все было так, работа большинства ученых провалилась бы. Чуть более сложный ответ мог прозвучать следующим образом: «систематическим исследованием природы для ее лучшего понимания и контроля, чтобы получать большую пользу от развития технологий». Этот ответ ближе к действительности, но его все еще недостаточно, поскольку он не включает в себя социальную, философскую, политическую и экономическую сферы.

Жизнь и карьера Бора помогут нам лучше понять эту многосторонность научной деятельности, поскольку его вклад охватывает все возможные области науки. И в этом большое отличие Бора от Эйнштейна, которого обычно представляют работавшим изолированно, в одиночку противостоявшим миру с его секретами, которому были чужды современники, особенно другие ученые, хотя все обстояло не совсем так.

Рассмотрев жизнь Бора, мы осознаем, что нашим пониманием атома и его недр мы обязаны не просто волшебному «открытию», блестящей идее или беспрецедентному эксперименту: оно идет от трансформации границ знания. На самом деле понимание атома стало возможным благодаря концентрации на самой концепции «знания» в науке.

Другими словами, Бор сумел лучше понять поведение субатомных частиц, поскольку не задавался теми же вопросами, которые интересовали его предшественников. С помощью этих вопросов люди пытались объяснить все происходящее в природе. В соответствии с механической моделью они представляли себе мир как завод, полный пружин и блоков, сил и натяжений. Данная традиция восходит к Декарту и Ньютону, и она давала плоды более двух веков. Но атомная и ядерная физика показали очевидные пределы этой эпистемологической модели, и Бор решился изменить их.

Эти философские предпосылки демонстрируют, что многие великие потрясения в науке не объясняются простым линейным и необходимым процессом, они тесно связаны с понятийными трансформациями представления о том, что такое наука и как она работает. Когда в 1913 году Бор предложил свою модель атома, многие ее не приняли не потому, что она не работала, а потому что она не была «наукой» в привычном на тот период понимании.

Дело в том, что новая наука об атоме, об атомном ядре и элементарных частицах, развивавшаяся в течение жизни Бора, поставила под сомнение сами понятия, которыми она оперировала. Атом, греческий корень которого предполагает простоту и неделимость, оказался системой субатомных частиц, и первым из них был открыт электрон. Таким образом атом лишился своего положения основного компонента материи и сам оказался сложной системой. Первая модель Бора, появившаяся до Первой мировой, включала в себя только центральное ядро, вокруг которого располагались электроны, причем их особенное распределение уже выходило за пределы понятия «орбита», упраздненного спустя 15 лет.

Термин «элементарная частица» также претерпел радикальные изменения по воле Бора. В первые годы XX века элементарные частицы, в том что касается их свойств простоты и неделимости, стали играть роль «атомов». Однако вскоре квантовая механика потребовала отказаться от «элементарного» характера элементарных частиц. Такие явления, как радиоактивность, могли быть объяснены только с учетом эквивалентности материи и энергии, введенной Эйнштейном, и трансформации одних частиц в другие. В результате в употребление вошли такие выражения, как «образование» и «расщепление» частиц. Более того, любая частица являлась также волной, а любая волна (как свет) — частицей. В новой физике сохранялись привычные термины, но радикально изменилось их значение.

Пример Бора показывает, что задача некоторых ученых — не только работать в лаборатории, выводить формулы и теории и присутствовать на конгрессах. Они также должны уметь добиваться финансирования исследовательских объединений и распоряжаться этими средствами. В данной области Бор был мастером, из ничего ему удалось создать огромный институт физики у.себя на родине и превратить его в центр квантовой революции в 1920-1930-е годы. В его стенах побывали все значимые физики в истории становления квантовой механики, и Бор выступил катализатором этих глубоких изменений.

Действительно, одна из интерпретаций квантовой физики получила название «копенгагенской», Бор сформулировал ее в 1927 году. В этом подходе были поставлены под сомнение такие идеи, как каузальный детерминизм, траектория частицы и само понятие частицы, локализованной в пространстве- времени. Эта интерпретация привела его к полемике с Эйнштейном, который не принимал неопределенность физики, предложенную Бором. Для немецкого физика вероятности для предсказания возможных результатов эксперимента — это плод нашего невежества; для Бора контингенция (случайность) есть свойство самого мира, и нет никакого смысла пытаться выйти за пределы вероятностных прогнозов, когда речь идет об атомных и ядерных явлениях.

На карьере Бора заметно сказались обе мировые войны. Первая разразилась, когда он формулировал принципы своей модели атома, и нарушение связей в физическом сообществе повлияло на принятие его теории в научных кругах. В то же время нейтралитет Дании позволил ему продолжить работу во время конфликта и после окончания войны превратить недавно созданный Институт теоретической физики в место, где ученые со всего мира, будь то представители стран-победителей или побежденных, могли встречаться без каких-либо дипломатических проблем.

Зато ущерб от Второй мировой войны оказался тяжелым вдвойне. Преследование так называемой «еврейской» науки гитлеровским режимом поставило Бора перед моральным выбором. В итоге он принял решение воспользоваться своими связями и источниками финансирования и помочь бежать как можно большему числу преследуемых немецких ученых. Дальнейшая эскалация военного конфликта привела его к активному участию в создании атомной бомбы, в Проекте Манхэттен.

Пока война набирала обороты, произошла одна из самых известных встреч в истории физики XX века — встреча Бора и его бывшего ученика и друга Вернера Гейзенберга, которого нацисты «наняли» для создания атомной бомбы в завоеванной Гитлером Дании. Неизвестно, о чем они говорили, хотя имеется множество предположений, в любом случае эта встреча — яркий пример этической проблемы, с которой часто сталкиваются ученые.

После Хиросимы и Нагасаки Бор начал битву за мир, разоружение и интернационализацию науки и занял важную позицию в международной политике первых лет холодной войны. В этом Бор не был одинок. Многие его современники ввязались в неразрешимый моральный конфликт, поставивший в трудное положение тех, кто мечтал о научном прогрессе. Многие упрекали Бора в наивности. Он предлагал то, что радикально отличалось от последующего хода событий холодной войны. Бор считал, что мир возможен, только если страны откажутся от закрытости своих технических и научных разработок, особенно в том, что касается вооружения. А когда нет стран, превосходящих другие по вооружению, нет агрессоров, и мир обеспечивается на глобальном уровне.

«Быть или не быть, вот в чем вопрос». Как и принц Гамлет, Бор сталкивался с этой дилеммой много раз за свою карьеру. Но он был далек от озлобленности и мрачного безумия, в которых пребывал шекспировский персонаж, искавший мира в несуществующем прошлом. Бор пытался реализовать свои принципы и превозмочь научные, философские и социальные противоречия, призвав на помощь воображение, ответственность и творчество. Таким он и остался в истории: Бор считается отцом поколения, изменившего физику.

1885 7 октября в Копенгагене на свет появляется Нильс Хенрик Давид Бор.

1911 Защищает в Копенгагенском университете докторскую диссертацию по электронной теории металлов.

1912 Переезжает в Манчестер, где с небольшими перерывами живет до 1916 года. Женится на Маргрет Норлунд.

1913 Формулирует свою модель атома.

1918 Удостаивается звания профессора в Копенгагене.

1918 Формулирует принцип соответствия.

1921 В Копенгагене открывается Институт теоретической физики.

1922 Бор удостаивается Нобелевской премии по физике за работу в области структуры атома и радиации.

1924 Начало сотрудничества, а также дружбы с Вернером Гейзенбергом.

1925 В своей первой статье Гейзенберг формулирует новую квантовую механику. Через год и Эрвин Шрёдингер публикует подтвердившуюся теорию. Эта трехсторонняя дискуссия (при участии Бора) дает в результате так называемую 4копенгагенскую интерпретацию» основ квантовой механики; Шрёдингер и Эйнштейн ее не признавали.

1927 Бор формулирует принцип дополнительности в Комо (Италия).

1932 «Чудесный год» для ядерной физики: открытие нейтрона и позитрона, запуск первого ускорителя частиц; все это происходит в Кембридже.

1933 До конца Второй мировой войны Бор находит в дружественных странах убежище физикам — жертвам нацистского режима.

1935 Запускает проект по созданию ускорителя частиц в Дании.

1939 Открытие расщепления ядра.

1943 Бор с женой переезжают в США.

1945 Атомная бомбардировка Хиросимы и Нагасаки. Бор начинает кампанию за «Открытый мир».

1947 Становится кавалером Ордена Слона, высшей национальной награды Дании.

1982 Умирает 18 ноября в Копенгагене.

1985 Институт теоретической физики получает название Института Нильса Бора.


ГЛАВА 1 Бор играет с электронами

По мере своего развития наука погружалась в сферу все более мелких частиц: сперва атомов, а затем крошечных электронов. В начале XX века электроны были недавним открытием и представляли собой целую вселенную, которую требовалось исследовать. Им и посвятил свою докторскую диссертацию молодой Нильс Бор, показав себя подающим надежды и оригинальным ученым.

Нильс Бор провел свои первые исследования в Дании, в маленькой по сравнению с крупными европейскими державами XIX века стране. Это небольшое скандинавское государство — родина викингов и колыбель писателей вроде Ханса Кристиана Андерсена (1805-1875), чьи сказки снискали мировую славу, философа-экзистенциалиста Сёрена Кьеркегора (1813-1855) и Карен Бликсен (1885-1962), которая подписывала свои работы псевдонимом Исак Динесен. Среди знаменитых датских ученых выделяются астроном Тихо Браге (1546- 1601), физики Ханс Кристиан Эрстед (1777-1851), чьи работы по нахождению связи между электричеством и магнетизмом сделали его одним из родоначальников электромагнетизма, и Людвиг Валентин Лоренц (1829-1891), прославившийся работами в областях оптики, электричества и термодинамики. К этому списку известных лиц следует добавить Нильса Хенрика Давида Бора, одного из самых влиятельных датчан в истории XX века.

Нильс Бор родился 7 октября 1885 года в неоклассическом особняке в центре Копенгагена, который его дед со стороны матери, состоятельный еврейский банкир, купил примерно десятью годами ранее. Его отец, Кристиан Бор (1855-1911), читал лекции по физиологии в Копенгагенском университете, где был профессором и ректором, следуя академической традиции, установленной семейством Боров в XIX веке. Так, Кристиан Фредрик (1773-1832) являлся членом Академии наук Швеции и Норвегии; Петер Георг (1776-1846), прадедушка Нильса, читал лекции по теологии, а Хенрик Георг Кристиан (1813— 1880), дедушка, был профессором и ректором гимназии Вестенске в Копенгагене. Все это позволяет представить Нильса как члена обеспеченной интеллектуальной семьи конца XIX века.

Его мать, Эллен Адлер (1860-1930), принадлежала к первому поколению датчанок, которым было разрешено обучаться в университете, хотя и с некоторыми ограничениями. В академических кругах считалось, что эта уступка по отношению к «слабому полу» может снизить качество университетского образования. Чтобы гарантировать женщинам успех в обучении, им была выделена дополнительная помощь в лице персональных наставников. Так Эллен познакомилась с преподавателем физиологии Кристианом Бором, который затем стал ее мужем.

В этом браке Нильс был вторым сыном. За два года до него родилась Дженни (1883-1933), которая, следуя по стопам матери, получила университетское образование в Копенгагене и Оксфорде. Здоровье иногда не позволяло этой девушке нервического склада отдаваться любимой работе, преподаванию. Через два года после Нильса родился его брат Харальд (1887- 1951). Между двумя братьями с детства установилась дружба, остававшаяся неизменной всю жизнь. Именно из писем к брату мы узнаем о некоторых подробностях первых приключений Нильса Бора за пределами Дании. Харальд стал блестящим математиком (профессором Копенгагенского университета) и лучшим футболистом, чем его брат, он даже был в составе сборной Дании на Олимпийских играх 1908 года в Лондоне.

Именно в отчем доме Нильс и Харальд сделали свои первые шаги в интеллектуальной жизни. К их отцу часто приходили профессор физики Кристиан Кристиансен (1843-1917), философ Харальд Хёффдинг (1834-1931) и лингвист Вильгельм Томсен (1842-1927), чтобы в неформальной обстановке обсудить самые разные темы. Обоим братьям разрешалось присутствовать при этих разговорах и даже участвовать в них, задавать вопросы и критиковать. Так укрепились некоторые свойства научной работы Бора: его страсть идти до конца, его стремление учитывать максимально возможное число точек зрения и не оставлять нерешенных задач.


ТИХО БРАГЕ

Тихо Браге — один из значимых астрономов эпохи Возрождения наряду с Коперником, Кеплером и Галилеем. Он родился в 1546 году в шведской провинции Сконе, принадлежавшей в ту пору Дании. Король даровал ученому остров Вен, где тот построил, пожалуй, лучшую обсерваторию своего времени, снабдив ее гигантским квадрантом для чрезвычайно точного измерения видимых диаметров звезд.

Как на современной фабрике, каждый сотрудник на острове решал определенную задачу (будь то наблюдение с помощью квадранта или последующие математические расчеты), и всех их контролировал вездесущий Браге. В конце XVI века, когда астрономы разделились на сторонников классической модели космоса (в которой все планеты вращаются вокруг Земли) и новой модели Коперника (с Солнцем в центре), Тихо Браге предложил третий вариант. Он заявил, что Земля находится в центре Вселенной, вокруг нее движутся Солнце и Луна, а остальные планеты перемещаются вокруг вращающегося Солнца (как показано на рисунке). Интересно заметить, что в XX веке аналогия между планетарными системами и атомной структурой была источником проблем, и Нильс Бор оказался первым, кто положил конец этому уподоблению перемещения электронов в атоме движению светил в космосе.


В 1903 году Нильс поступил в Копенгагенский университет, чтобы изучать физику, хотя этот предмет был не единственным его увлечением в студенческие годы. Вместе с братом и дюжиной приятелей, получавших самое разнообразное образование, они создали философский клуб «Эклиптика», в некоторой степени воспроизводивший виденное ими дома. Это был междисциплинарный клуб, где молодые люди обсуждали различные серьезные научные вопросы в неформальной дружеской обстановке. На этих собраниях проявилась еще одна черта Бора: сосредоточившись на конкретной проблеме, он говорил все тише, пока не переходил на шепот. (Нильс Бор едва различал процессы мышления и говорения, так что очень часто его слова были почти неслышны.) Из этого клуба со временем вышли профессор филологии, профессор психологии, три директора национальных музеев, директор Института геодезии, экономисты и один посол Дании.


ЭРСТЕД И ИСТОКИ ЭЛЕКТРОМАГНЕТИЗМА

Датский физик первой половины XIX века Ханс Кристиан Эрстед известен как один из первых исследователей, доказавших тесную связь электричества и магнетизма и объединивших таким образом две науки в одну — электромагнетизм. Почти случайно в 1820 году Эрстед заметил, что при включении и выключении электрической цепи стрелка на компасе рядом с прибором отклоняется. Это подтверждало, что электрический ток и магнитные колебания — явления, связанные между собой. Примечательно, что эта связь проявляется только при включении или выключении прибора, а также при изменении силы электрического тока. Следовательно, не собственно ток, а его изменения влияют на земное магнитное поле и заставляют стрелку отклоняться.

Эрстед проводит электромагнитный эксперимент в Копенгагенском университете.




ФИЗИКА В КОПЕНГАГЕНЕ 1903 ГОДА

Организация науки и научных учреждений — вопрос постоянных изменений. Возможно, читатель думает, что лучшее место для получения научного образования — университет. Но это не всегда так, и уж точно так не было в большей части западного мира до XIX века. Современная наука — результат долгого и разностороннего процесса, в котором университет скорее создавал помехи, чем оказывал поддержку.

В Англии, Испании и Италии XIX века университеты играли, если можно так сказать, консервативную роль, и их главной целью было оставаться местом воспитания духа, обучения интеллектуальной дискуссии. Другими словами, в этих странах университет в большей степени стремился сохранять и передавать знание, чем созидать его. Так, в викторианской Англии наука была увлечением буржуазии и среднего класса, а эксперименты проводились в частных лабораториях.

В Германии и Франции, напротив, в тот же период был создан новый тип университета, больше похожий на известный нам сегодня, где преподавание и исследование (чистое и прикладное) взаимосвязаны и составляют самую суть высшего образования. Университет отдалился от статичного учреждения, и его постоянные реструктуризации (появление новых лабораторий, новых академических дисциплин и новых ученых степеней) способствовали обогащению учебного процесса.

В случае с Копенгагенским университетом в начале XX века было очевидно, что учреждение требует реформ ввиду серьезных недоработок. В штате был только один профессор физики, да и тот читал курс студентам-медикам, в университете отсутствовали и оборудование, и лаборатории для проведения экспериментов. Любое исследование студенты были вынуждены реализовывать в частных лабораториях или на производстве. Так, чтобы представить работу по физике на научный конкурс, поступивший в университет в 1903 году Бор работал в лаборатории отца, с ограничениями, которые это налагало. Тем не менее он получил золотую медаль за этот единственный эксперимент в жизни, поскольку его интерес и способности всегда были сосредоточены на теоретической физике.


ТЕОРЕТИЧЕСКАЯ ФИЗИКА

Теоретическую физику можно определить как попытку найти законы и соответствия в природе на основе экспериментальной информации, полученной кем-то другим. При помощи интуиции и высшей математики теоретическая физика стремится заключить различные явления в рамки единой концепции. Можно сказать, хотя это и анахроничное утверждение, что теория гравитации Исаака Ньютона (1643-1727) является продуктом теоретической физики. Конечно, английский мыслитель не был первым, кто увидел, как падают яблоки, но именно он объединил движение свободного падения и движение планет в один математический закон — закон тяготения. Для этого ему не потребовалось ставить новые эксперименты и проводить другие наблюдения: было достаточно взять данные об орбитах Кеплера или данные по траекториям снарядов. Ньютон гениально увязал оба типа явлений и доказал, что они соответствуют одной формальной модели.

В теоретической физике математика играет центральную роль, поэтому ее не сразу признали полноправной научной дисциплиной, считая ее частью математики. Даже сегодня, например, в Кембриджском университете теоретическая физика включена в курс математики. Ее рассматривают как прикладную математику, поскольку обычная работа физика-теоретика заключается в развитии принципов и теорий математически — чтобы получить прогнозы и лишь затем сопоставить их с опытом. Таким образом можно обнаружить новые явления или отношения, объединяющие те явления, которые прежде считались независимыми друг от друга.

Теоретическая физика также имеет тесную связь с традиционным представлением о философии. Если экспериментальная наука сосредоточивается на конкретных и специфических явлениях (невозможно экспериментировать со «всем»), то задача теоретической физики — пойти дальше конкретных случаев и задаться обобщающими вопросами: что общего между рядом внешне различных явлений? какова их конечная причина? какова конечная природа материи? Понятно, что ответы теоретической физики не настолько обширны, как ответы философии, так как первая ограничена математическим языком, но (и это будет очевидно в случае Бора) переход из одной в другую — совсем не редкость.

Именно в Германии возникли первые специализированные кафедры теоретической физики. Это соединение философии, прикладной математики и косвенной связи между данными наблюдаемого приобрела там академический статус, который постепенно распространился на страны германского влияния. Когда Бор поступил в университет, эта тенденция еще не дошла до Копенгагена, и решение посвятить себя теоретической физике было продиктовано не доброй волей студента или профессора физики, а следствием отсутствия экспериментальных средств или исследовательских лабораторий.

Весной 1911 года Нильс Бор закончил докторскую диссертацию о поведении электронов в металлических материалах. Мы вернемся к этому вопросу в конце главы, но для начала нужно прояснить, чем считались атомы и электроны в начале XX века. Проанализируем вклад первых ученых, работавших в этой области.


НОВАТОРСКАЯ РАБОТА ДЖОНА ДАЛЬТОНА

Кто же открыл атомы и электроны? И что значит слово «открыть»? Хотя оно и является общеупотребительным, объяснить его довольно трудно. Задача ученых состоит не в том, чтобы «открывать», то есть внезапно поднимать воображаемый скрывающий действительность занавес, как фокусник вытаскивает кроликов из цилиндра. Совсем наоборот. Обычно открытия — это продолжительные процессы, в которых задействованы множество людей в различных местах; только для простоты их приписывают одному человеку в конкретном месте в конкретное время.

Это особенно верно в случае с атомами. В научно-популярной литературе историю атомизма обычно рассказывают следующим образом. Древние греки Демокрит и Левкипп, а позже и римлянин Лукреций предположили, что, возможно, мир состоит из неделимых, неразрушимых и неразличимых атомов, произвольные движения которых объясняют изменения макроскопического мира. Эту историю продолжает скачок протяженностью в 18 веков, в ходе которых развитие научного атомизма вытеснялось альтернативными идеями. Хотя этот способ представления фактов и привлекателен, он в корне неверен, поскольку современное понятие об атоме не имеет никакой связи с тем древним представлением, кроме общего слова.

Традиционная история представляет современный атомизм плодом исследований британского ученого Джона Дальтона (1766-1844). Это верно, хотя предпочтительно избегать слова «открытие», поскольку это может навести на мысль, будто Дальтону удалось «увидеть» атомы через мощный микроскоп. Но это крайне далеко от реальности, поскольку атомы нельзя увидеть и сегодня, даже с помощью самого продвинутого микроскопа: они слишком малы. Как же Дальтон пришел к выводу о том, что материя состоит из атомов?

Нет ничего удивительного в том, что Дальтон, привычный к туманам и дождям Манчестера, заинтересовался конденсацией водяного пара, концентрацией воды в атмосфере, влиянием атмосферного давления и температуры на относительную влажность воздуха. С 1799 по 1805 год Дальтон представил ряд работ по этим темам, в которых заложил основы своего атомизма. Примечательно, что теория материи Дальтона родилась из наблюдения не твердых тел, а жидкостей и газов.

Изучение жидкостей и газов стало центральной темой его исследований: с учетом того, что разница между этими состояниями только качественная, по своим свойствам жидкости и газы сходны — все это флюиды. Одно из первых свойств, провозглашенное Дальтоном: давление и температура флюида прямо пропорциональны — чем выше температура, тем выше давление. Кроме того, процесс испарения связан с давлением, которое оказывают друг на друга газ и жидкость. Много лет считалось, что испарение газа подобно растворению твердого тела в жидкости, но поведение жидкостей в вакууме (где они также испаряются) поставило под сомнение эту теорию.


ДАЛЬТОН, СИМВОЛ МАНЧЕСТЕРА

Джон Дальтон, отец современной атомной теории, представлял собой архетипического британского естествоиспытателя XIX века. Выходец из семьи квакеров, он не мог попасть в университет, который в ту пору оставался доступным только адептам англиканской церкви. Дальтон был самоучкой и проводил свои исследования по газам в стесненных условиях.

Однако по мере того как признавалась важность и польза атомной теории, авторитет Дальтона возрастал. Некоторые университеты предоставили ему почетные титулы, король Георг вручил медаль в награду за его работу, а различные иностранные общества назвали его своим почетным членом. В 1833 году, в возрасте 67 лет, он получил пожизненную пенсию. Но ничто из этого не изменило его простых привычек. Дальтон жил в Манчестере с 1793 года, когда город прогрессировал в ритме промышленной революции. Опасаясь того, чтобы этот прогресс не ограничился экономической сферой, местная буржуазия поддерживала художников, философов и ученых, которые помогли бы приравнять Манчестер к крупнейшим аристократическим центрам Англии. Дальтон справлялся с этой миссией, и памятник в его честь был воздвигнут еще при жизни исследователя. Это не только воздаяние почестей, но и стремление нанести Манчестер на культурную карту и доказать, что экономическое развитие предполагает также развитие научное. Дальтон скончался у себя дома 27 июля 1844 года. По завещанию ученого было произведено вскрытие его тела, в ходе которого подтвердилась его теория относительно причин особенности зрения, сегодня известной как дальтонизм. Похороны стали публичным событием неслыханного масштаба для ученого, ведшего столь скромную жизнь. Около 40 тысяч человек вышли на улицы города фабричных труб, чтобы почтить того, кого они сами сделали символом Манчестера.



Изучая испарение, Дальтон заинтересовался другим вопросом, а именно составом воздуха. На протяжении веков люди науки полагали, что атмосферный воздух — это единственный чистый газ. Согласно древней теории, атмосферный воздух — одна из четырех стихий, наряду с водой, огнем и землей. Французский ученый Антуан Лавуазье (1743-1794) показал, что на самом деле воздух состоит по крайней мере из двух элементов. Оставалось понять, как именно соединяются различные газы. Первым вариантом была химическая реакция, то есть предположение, что воздух — это вещество, продукт взаимодействия составляющих его газов. Но Дальтон отверг эту теорию. Его метеорологические наблюдения показали, что различные типы газов соединяются, не теряя своих свойств.

На основе этой идеи он провел измерения давления газов, состоящих из разных веществ, и пришел к выводу, что давление, оказываемое определенным объемом газа, не зависит от того, какие газы находятся в том же объеме. Другими словами, давление, оказываемое составным газом, — это сумма значений парциального давления каждого из его компонентов. Так, пользуясь современной терминологией, общее давление атмосферного воздуха равно сумме давлений, которые оказывают по отдельности кислород, азот и остальные газы, входящие в состав атмосферы. Тот факт, что газы представлены вместе, не влияет на давление, которое оказывает каждый из них. Это называется «законом парциальных давлений», или «законом Дальтона».

Использование весов, столь важных в работах Джозефа Пристли (1733-1804) и Антуана Лавуазье, также было определяющим для Дальтона. С 1800 по 1808 год исследователь провел точные и системные измерения некоторых химических реакций и на их основе сформулировал закон кратных отношений. Иногда два элемента реагируют друг с другом различным образом, и получаются различные сложные вещества. Это случай кислорода и углерода, которые могут образовывать монооксид углерода (СО) или диоксид углерода (СO2). Масса кислорода, реагирующая с постоянной массой углерода, сохраняет простое числовое отношение (2:1). Так, для каждых 100 г углерода нужно 133 г кислорода, чтобы образовать СО, и 266 г — чтобы образовать СО2. Это простое отношение, но его можно определить, только когда в распоряжении имеются точные измерительные приборы.

Молодой Нильс Бор с матерью, Эллен Адлер, происходившей из состоятельной еврейской семьи с многочисленными связями в банковской и политической сферах.

Датский ученый в Копенгагенском университете, 1920-е годы.


Веру в то, что материя состоит из атомов, вновь пробудил авторитет Ньютона. Но каковы эти атомы? Вклад Дальтона состоит в том, что он утвердил атомную теорию, совместимую с наблюдениями за газами и химическими реакциями. Закон кратных отношений, казалось, говорил о том, что атомы определенного вещества отличаются от других атомов массой. Можно было представить, что каждый химический элемент характеризуется массой его атомов. Дальтон допускал, что атомы — это твердые шарики, окруженные атмосферой тепла. Основываясь на своем законе парциальных давлений, он также решился предположить, что кроме массы, у атомов есть и другая характеристика — размер.

Наблюдения за смесями газов привели его к выводу, что при соединении различные газы сохраняют некую независимость друг от друга. Таким образом, вклад каждого газа в общее давление независим от прочих смешанных газов. Это навело его на мысль, что причина подобной независимости заключается в различном объеме атомов, входящих в состав газа. Атомы достигают равновесия с другими атомами такого же размера, но это равновесие невозможно с другими типами атомов.


АТОМЫ, ЭЛЕМЕНТЫ И ВЕЩЕСТВА

С усовершенствованием весов и прочих измерительных приборов Лавуазье и Дальтон, среди прочего, сумели сформировать новую химию. Атомная гипотеза, принятая лишь частично, позволила выделить новые вещества (24 из них были отделены с 1800 по 1850 год: алюминий, кальций, литий, магний, калий, кремний...). В 1860 году в немецком городе Карлсруэ международное научное сообщество предприняло попытку навести порядок в хаосе, вызванном появлением стольких новых «действующих лиц».


МАССА АТОМОВ

Атомная теория Дальтона обеспечила истории атомизма главный элемент: представление о том, что масса — одна из основных характеристик атома. С 1805 года Дальтон прокомментировал свою теорию в Манчестерском литературно-философском обществе, а затем в университетах Глазго и Эдинбурга. В качестве дидактического материала он приводил таблицу, в которой атомы некоторых элементов представлены в виде шариков различной структуры, упорядоченных в зависимости от их массы. Номер (масса), результат измерения на весах, впервые превратился в критерий для упорядочивания химических веществ. Следуя алхимической традиции, Дальтон определил специальный символ для каждого типа атомов; сегодня мы пользуемся буквами (С — углерод, Hg —ртуть и так далее).

Страница книги Дальтона «Новый курс химической философии» (1808), на которой представлены символы, использованные им для обозначения каждого из атомов (вверху). Внизу приведены символы сложных веществ, образованных двумя или более атомами.



[Этот съезд] позволит прийти к согласию в определении важных химических понятий, которые выражаются словами «атом», «молекула», «эквивалентность», «атомный» и «базовый», [...] а также установить единые обозначение и номенклатуру.

Приглашение на Съезд в Карлсруэ


Съезд в Карлсруэ в 1860 году стал первой международной встречей химиков в истории и имел чрезвычайную важность для развития химии как научной дисциплины. Алхимия всегда была особым знанием, передаваемым из уст в уста практически по секрету. Характеристика материальных веществ в зависимости от их свойств делала материю чем-то таинственным и закрытым, и это знание было доступно немногим. С появлением точных весов химические вещества стали классифицироваться по их массе, а не по свойствам. Но чтобы говорить об атомных массах, нужно было иметь базовую единицу, которая стала бы единой для всех лабораторий. Без нее научное общение и сравнение результатов оказались бы невозможными. Именно эта задача была решена в Карлсруэ: ученые высказались за систему измерений, в которой атомная масса углерода равнялась 12, а кислорода — 16.

Определение атомной массы — нелегкий процесс, поскольку атомы не видны и их также нельзя измерить по отдельности. Дальтон считал, что каждое химическое вещество состоит из особенного типа атомов, отличающегося от остальных веществ. Допустим, если назначить массу 1 атому водорода, то на основе измерения массы сложных веществ в составе с водородом можно вывести массу других веществ. Так, например, если вода состоит из водорода и кислорода и весит в восемь раз больше, чем масса чистого водорода, то логично предполагать, что атомная масса кислорода — 8.

Итальянский ученый Амедео Авогадро (1776-1856) предложил другой метод определения атомной массы, основанный на измерении объемов газов, которые вступают в реакцию. С другой стороны, Луи Жозеф Гей-Люссак (1778-1850) заметил, что в реакциях между газообразными веществами пропорции объемов, вступающих в реакцию, всегда простые — 1:1, 2:1 или 3:1. Например, в случае с водой два объема водорода приходятся на каждый объем кислорода. Авогадро предположил, что число молекул каждого объема газа всегда одно и то же, независимо от типа газа. Это единственная гипотеза, совместимая с наблюдениями Гей-Люссака. Однако если это так, то реакция для образования воды — уже не соединение одного атома водорода с одним атомом кислорода, а двух с одним. То есть масса кислорода приближается к 16, это в два раза больше, чем предлагал Дальтон.

Один объем кислорода вступает в реакцию с двумя объемами водорода, и получается два объема воды. Если гипотеза Авогадро об одинаковом числе молекул одинакового объема газов верна, то кое-что не сходится. Один объем кислорода дает два объема воды, то есть каждая молекула кислорода дает две молекулы воды. Это возможно, только если молекулы чистого кислорода состоят из двух атомов кислорода и каждый из них дает одну молекулу воды. Все это абсолютно очевидно сегодня, когда мы привыкли говорить о воде как об Н20, но в начале XIX века это было рискованное предположение.

Гипотезы Авогадро не были широко известны, пока Станислао Канниццаро (1826-1910) вновь не озвучил их на Съезде в Карлсруэ. И вот оказалось возможным составить новую систему атомных масс и одновременно ввести различие между элементом, молекулой и атомом. Это разделение оказалось ключевым в работе Дмитрия Менделеева (1834-1907). В 1867 году Менделеев получил должность профессора химии Санкт-Петербургского университета и читал общую химию студентам первого курса. Однако он столкнулся с отсутствием книг на русском языке, в которых были бы изложены новшества, введенные на Съезде в Карлсруэ, так что Менделеев решил написать собственный трактат. В середине XIX века сделать это было непросто. Было известно 63 химических элемента, и требовалось найти какой-нибудь способ классифицировать их. Менделеев не был удовлетворен обычной классификацией в соответствии с химическими свойствами и сделал ставку на классификацию химических элементов в зависимости от их атомной массы.

В двухтомнике «Основы химии*, написанном Менделеевым в 1868 и 1869 годах, довольно четко прослеживается развитие его мысли в тот период. Вначале классификация элементов в соответствии с массой была дидактическим инструментом. Но работая над вторым томом, Менделеев обратил внимание, что свойства элементов тесно связаны с позицией, которую они занимают в этой классификации. Упорядочивание по возрастанию масс также открывало определенную модель, в которой химические свойства повторялись. Если по горизонтали порядок выражал рост массы, то по вертикали приводились основные химические свойства.

Периодическая таблица в том виде, в каком Менделеев опубликовал ее в 1871 году. Химик включил известные на тот момент элементы и оставил свободные места, которые понадобились для открытых в дальнейшем веществ, поскольку каждая клетка соответствует элементу с определенными свойствами.


Сегодня периодическая таблица элементов есть во всех химических аудиториях, лабораториях, учебниках для средней школы... Это упорядочивание символов по рядам и столбцам дает, даже на первый взгляд, много информации о химических свойствах элементов. Только зная, в каком месте таблицы находится конкретное вещество, мы определяем, является ли оно металлом, благородным газом, щелочным веществом и так далее. Положение элемента в таблице также предоставляет данные о распределении электронов на периферии атомов.

Естественно, в середине XIX века такая классификация была невозможна, поскольку если и допускалось существование атомов, то абсолютно простых, не обладающих структурой. Периодическая таблица — пожалуй, самое полезное, лаконичное и содержательное дидактическое изобретение в истории науки.

Каково было отношение Менделеева к атому? Как и большинство химиков того времени, он принимал сам термин, но не верил в реальность атома как дискретной частицы материи. Говоря об атомах, химик подразумевал, что вещества вступают друг с другом в реакцию в определенных отношениях. Для Менделеева атом кислорода или водорода — минимальное количество этого вещества, причем необязательно его минимальная физическая структура. Есть некая ирония в том, что классификация Менделеева, так повлиявшая на принятие реальности атомов, была разработана в контексте скептического отношения к их существованию.


АТОМ ФИЗИКОВ

Реальность атомов была одной из самых обсуждаемых тем в XIX веке. Главный вопрос состоял в том, до какой степени атомная теория является научной. Проблема была довольно серьезной, потому что ни Дальтон, ни Менделеев собственно атом не открыли. Атомная теория имела несомненную ценность ввиду ее успеха в объяснениях и косвенных проверках, но она не была окончательно доказана. Таким образом, во второй половине XIX века в дискуссии вокруг реального существования атомов наступил один из кульминационных моментов. В центре полемики была философская позиция о природе и методе науки, известная как позитивизм.

Сам термин ввел французский философ Опост Конт (1798-1857), и главный тезис заключался в том, что научный метод и, следовательно, любое знание основываются только на эмпирических наблюдениях. То есть «если я этого не вижу, я в это не верю». Позитивизм стремился искоренить любые философские и теологические предположения, не связанные с наблюдаемыми фактами. Реальным считалось только то, что было очевидно, все остальное переводилось в область субъективизма, относительности и бессмыслицы. Наука же воспринималась как единственное ценное знание, гарант истины о мире и прогрессе человечества.

Позитивистский миф основательно утвердился, и даже сегодня кто-то полагает, что только научное знание серьезное, ценное и истинное, но господство данного философского подхода положило бы конец собственно научному прогрессу. Полемика вокруг атомов в XIX веке — хороший пример сложности научной деятельности и того, насколько недальновидно считать, что наука основана только на ощутимых наблюдениях. Ведь ни Дальтон, ни Менделеев не наблюдали атомы напрямую, они лишь догадались об их существовании по косвенным проявлениям, пропорциям химических веществ.

Другие свидетельства возможного существования атомов пришли из новой области физики, которая формировалась в течение XIX века,— из термодинамики. Интереснейшая научная и философская проблема заключается в связи между научными понятиями и обывательскими представлениями о явлениях. Так, хотя у всех нас есть представление о том, что такое тепло, нелегко дать ему ясное и точное определение. История научной мысли предлагает несколько ответов, но самой популярной в XVIII веке была теория теплорода. Согласно этой теории, тепло — это вид вещества (как флюид), которое передается от теплых тел холодным. «Обладать большим теплом* означало именно это: иметь больше вещества под названием теплород. Однако постепенно в отношении данной теории стали закрадываться сомнения. Известно замечание Бенджамина Томпсона (1753-1814) о том, что количество тепла, которое может быть передано трением, внешне неограниченно. Будучи военным инженером, он наблюдал за изготовлением пушек и заметил, что количество тепла, выделяющееся при пробуравливании металла, пропорционально трению, которому подвергается металл. Казалось, что тепло каким-то образом связано с движением.

Твердое тело (форма и объем неизменны)

Жидкость (форма сосуда и неизменный объем)

Газ (форма и объем сосуда)


Кинетическая теория газов приписывает такие свойства, как тепло или давление, движению каждого из атомов, образующих газ, и их со стенками сосуда, его содержащего.


В 1857 году немецкий физик Рудольф Клаузиус (1822- 1888), работавший в университете Цюриха и уже несколько лет изучавший это явление, опубликовал статью «О роде движения, который мы называем теплотой». На основе механического представления о том, что газы состоят из крошечных атомов, Клаузиус разработал теорию, согласно которой температура и давление на стенки сосуда, содержащего газ, — это результат движения атомов. Точнее, температура — это всего лишь статистическое проявление кинетической энергии атомов, которые образуют газ. Эта теория известна как «кинетическая теория газов».

Предложение Клаузиуса нашло отклик среди молодых ученых. Особо следует выделить работу британца Джеймса Клерка Максвелла (1831-1879), который сделал важное уточнение. Максвелл считал, что не только средняя скорость атомов влияет на температуру и давление газа, но также и его распределение скоростей, то есть число атомов, которые в определенный момент имеют скорость выше или ниже средней. Статьи Клаузиуса и Максвелла вызвали крупную дискуссию о справедливости кинетической теории газов и дали толчок научной карьере другой значительной фигуры в физике, австрийца Людвига Больцмана(1844-1906).

Чтобы обеспечить физическим смыслом формулу Максвелла, Больцман сосредоточился на изменении давления газа в зависимости от высоты. Если газ состоит из атомов с различными скоростями, они должны меняться соответственно с высотой из-за воздействия гравитации. Больцман рассчитал этот эффект, следуя распределению скоростей Максвелла, и выяснил, что он совпадает с изменением давления, наблюдаемого у газа. Так Больцману удалось связать атомный эффект (изменение гравитации для каждого из атомов, а с ним и изменение скоростей) с макроскопическим эффектом (изменением давления). Кроме того, Больцман сделал еще один шаг в кинетической теории, включив в нее не только линейные скорости атомов, но также и их вибрации, что следовало учитывать при объяснении макроскопических величин газов. Больцман опубликовал эту работу в возрасте 24 лет, и она обеспечила ему международное признание, в том числе со стороны самого Максвелла. С тех пор формула распределения скоростей газа известна как формула Максвелла — Больцмана.

Проблема, которую Больцман обозначил и развил, связана с формулой распределения скоростей атомов газа. Звучит она так: как возможно то, что отдельные (полностью произвольные и хаотичные) движения каждого из атомов газа поддерживают распределение скоростей, которое всегда соответствует формуле Максвелла — Больцмана? В гипотетическом идеальном мире проблема имеет решение. Надо всего лишь иметь уравнения движения каждого атома и их положений в определенный момент. Однако любой объем газа, каким бы маленьким он ни был, содержит миллионы миллионов атомов, так что задачу невозможно решить. Следовательно, описать газ на основе атомов, из которых он состоит, можно только с помощью статистической математики.

Вместо того чтобы пытаться понять, что произойдет с каждым из атомов, Больцман сосредоточился на поведении атомов с определенным направлением и скоростью в заданный момент времени. Нужно было оценить возможные столкновения атомов и с учетом этого вычислить среднее значение для всех групп атомов. Так австрийскому физику удалось обосновать уравнение распределения скоростей, о котором Максвелл интуитивно догадался и которое он сам изменил. Самым значимым результатом Больцмана была констатация того, что пока отдельные атомы следуют законам Ньютона о движении, постоянное изменение отдельных скоростей несовместимо с появлением состояний макроскопического равновесия. Значит, в газе в состоянии равновесия (при постоянных температуре и давлении) скрывается неистовая и внешне беспорядочная деятельность. Законы Ньютона о движениях отдельных тел, таким образом, объясняли давление и температуру газов — величин, которые относятся к большим скоплениям атомов. Это настоящая симфония в исполнении атомов под управлением законов Ньютона.


ЭЛЕКТРОНЫ

Как в химии, так и в статистической физике предполагалось, что атомы реальны, а если это не так, по крайней мере они представляют собой модель, обладающую высокой объяснительной силой. Однако в конце XIX века само существование атомов все еще не было неоспоримым фактом. И именно в таком контексте появилась первая субатомная частица; то есть в то время как некоторые ученые сомневались в реальности атомов, другие исследователи уже осмеливались говорить о гораздо меньших частицах — электронах. Так же как и атомы, электроны не были «открыты» с помощью более мощных микроскопов, они возникли на научной сцене в результате попыток лучше понять электричество, и только через некоторое время стало ясно, что они являются общими составляющими всех атомов.

Ученый, имя которого связывают с открытием электрона, — Джозеф Джон Томсон (1856-1940), преподаватель экспериментальной физики и директор Кавендишской лаборатории в Кембридже с 1884 по 1919 год. За те 35 лет его лаборатория прославилась на весь мир, физики со всех стран приезжали сюда, чтобы стать передовыми исследователями. Секрет успеха был не столько в установках и технических средствах, сколько в интеллектуальной свободе, которую Томсон предоставлял своим сотрудникам. В Кавендише проводились всевозможные физические эксперименты, если только они не требовали чрезвычайных вложений (Томсон был известен своей скупостью). Британский ученый предлагал своим исследователям значительные идеи, а те были вольны принять их или нет, также они сами могли решать, каким способом реализовать эти идеи. Методика Томсона как педагога заключалась в том, чтобы предоставлять свободу действия.

Кроме управления лабораторией ученый занимался исследованием электрических разрядов газов. Выбор данной темы — пример того, как первые шаги в науке влияют на последующую карьеру ученых. Еще в Манчестере Томсон заинтересовался составом материи и структурой эфира.


ЭЛЕКТРОМАГНИТНЫЙ ЭФИР И СПИРИТИЗМ

Что такое эфир? Или, точнее, чем был эфир? В Англии XIX века физики восстановили это старое представление: мир «заполнен», иначе как передавались бы силы, особенно электрические? Вопрос нетривиален, хотя существование эфира так же являлось неочевидным. Эфир должен был быть достаточно тугим, чтобы передавать электромагнитные силы, но в то же время достаточно гибким, чтобы не оказывать сопротивления движению твердых тел. В то же время он должен был быть очень легким, поскольку не удалось измерить его массу. Противоречиво ли это понятие? Сегодня физики полагают, что так, но еще в XIX веке казалось абсурдом рассуждать о силах между удаленными телами, не имеющими посредника. Эфир не только позволял объяснить электрические силы: считалось, что с учетом его особенных характеристик, возможно, он объяснит связь с миром духов, телепатию и так далее. Следует помнить, что во второй половине XIX века буржуазия Англии и США была увлечена оккультными силами. Благодаря трансатлантическому кабелю стала возможной телеграфная связь между двумя странами, и этот контекст способствовал расцвету спиритизма. Считалось, что наука может и должна объяснить все, включая телепатические и спиритические явления. Так, в 1882 году группа преподавателей и студентов Кембриджа и ряда университетов основала в Лондоне Общество психических исследований, существующее до сих пор. Среди физиков того времени, участников этой организации, были лорд Рэлей, бывший директор Кавендишской лаборатории, и Уильям Крукс, который наряду с Дж. Дж. Томсоном являлся крупным специалистом в изучении электрических разрядов газов. Сам Томсон заинтересовался этой темой и участвовал в научных сеансах спиритизма и телепатии, «научных» в том смысле, что зал, где проводились такие сеансы, был полон приборов, измеряющих электричество и магнетизм, которые должны были зафиксировать потоки энергии.

"Сеанс гипноза", полотно кисти Ричарда Борга, 1887 год (Национальный музей в Стокгольме).


В Кембридже он стал специалистом по новым теориям об электричестве и магнетизме, которые Максвелл развил в своем «Трактате» Максвелл объединил два явления, до тех пор считавшиеся различными, — электрические и магнитные силы. Он также предположил, что электрические разряды в газах могут быть хорошей отправной точкой для понимания сил электромагнитных и сил, обеспечивающих целостность атомов. Они могли способствовать постижению связи между атомами и эфиром и, следовательно, лучшему пониманию обеих материй. Максвелл не успел развить свою идею, в возрасте 48 лет он скоропостижно скончался. В течение последних пяти лет он возглавлял Кавендишскую лабораторию, и Томсон, его преемник, оказался морально обязанным завершить эту работу.

Разряды в газах обычно наблюдаются во флуоресцентных трубках: стеклянная колба заполняется определенным газом при низком давлении, разница электрических потенциалов в газе дает внезапное лучеиспускание, которое исчезает при отсутствии разницы потенциалов. Хотя сегодня мы привыкли к свечению флуоресцентных ламп, и оно даже раздражает нас своим мерцанием, более 100 лет назад это явление обладало ореолом таинственности. В зависимости от типа используемого газа (и при изменении давления газа, электрического потенциала или формы стеклянной трубки) цвет разряда может варьироваться. В темноте это свечение захватывало воображение и ученых и публики — не только из-за красоты, но и из-за спиритической притягательности.

Любой школьник знаком с законом Ньютона о всемирном тяготении и законом Кулона об электрической силе, и вот между ними была проведена аналогия. Точно так же, как существует концепция массы, от которой зависит сила тяготения, существует и другая концепция — электрические заряды, положительные или отрицательные, которые взаимно притягиваются или отталкиваются. Однако разговор об электрических зарядах требует абстрагирования, поскольку на самом деле существуют не сами заряды, а электрически заряженные тела. Это важно для понимания формулировки Томсона и других английских физиков XIX века.

Модель, с помощью которой Томсон визуализировал электрический разряд, подобна модели, используемой при электролизе. Ученый представлял себе, что с электрическим разрядом происходит диссоциация молекул газа и последующая их реассоциация. Как в популярных танцах с постоянной сменой партнеров, энергия, рассеянная в электрическом разряде, вызвана этим постоянным обменом атомов между молекулами. В 1883 году Томсон разработал теорию материи, согласно которой атомы — всего лишь вихри эфира, то есть зоны, где эфир движется, образуя спирали. Так, ассоциация и диссоциация атомов — это различные динамические сочетания этих вихрей, и электрические явления вызваны натяжениями, которые такие движения производят в эфире.

Это видение мира, в котором атомы и электрический заряд предстали как проявления одной базовой сущности — эфира, — позволяло рассматривать химию и электромагнетизм комплексно. Однако теория не имела успеха, и Томсону пришлось заменить ее другой, более простой, но менее универсальной, в которой электрический заряд — это свойство атомов молекул в их взаимоотношении с эфиром. Таким был первый шаг к «атомизации» электрического заряда, столь важный для последующих работ ученого.

Когда Томсон понял, как сложно установить теорию, которая объяснила бы взаимодействие между электричеством, материей и эфиром, он сосредоточился на изучении катодных лучей. Катодные лучи — это свет, который появляется, если задать разницу потенциалов в вакуумных трубках. Отсутствие материи позволяло предположить, что понять механизмы электрической проводимости эфира станет легче. Было известно, что катодные лучи отклоняются по магнитным полям, но с электрическими полями того же не наблюдалось. Отсюда противоречие между корпускулярными и волновыми объяснениями. Первые заключались в том, что катодные лучи — это результат прохождения электрически заряженных молекул между анодом и катодом (полюсами трубки). Такое объяснение противоречило предположению, что в электрических полях нет отклонения. Поэтому некоторые исследователи утверждали, что катодные лучи — это волна, передаваемая в эфире и не сопровождаемая материей.

Томсон заметил, что катодные лучи все-таки отклоняются из-за электрического поля, что делало более вероятной их идентификацию как электрически заряженных молекул. Британскому ученому, работавшему над моделью электролиза, показалось логичным, что катодные лучи — это результат испускания заряженных молекул анодом и катодом. Однако, к собственному удивлению, в 1897 году он установил: частное между зарядом и массой этих молекул таково, что масса должна быть в тысячу раз меньше массы самого маленького известного атома, атома водорода. Кроме того, новая молекула не зависела от типа материала, из которого сделаны катоды, в связи с чем Томсон пришел к выводу: маленькая молекула, ответственная за катодные лучи, является компонентом всех атомов. Эту частицу он назвал «корпускулой».

Сегодня корпускулы мы называем электронами и рассматриваем их как одни из элементарных частиц материи. Однако в конце XIX века предположение, что атомы состоят из равных между собой корпускул, плохо восприняли как химики, так и физики. Томсона упрекнули в приверженности алхимии и в том, что он воскрешает старую мечту о трансмутации элементов. Атомы Дальтона различались между собой, они были неизменны и неделимы, что гарантировало некую стабильность Вселенной. Если атомы состоят из субатомных частиц, то единственное различие между атомами — это число и организация таких частиц, что приближает к возможности замены одних атомов другими, например к превращению ртути в золото, как того хотели средневековые алхимики. Как раз поэтому физики и химики не сразу приняли корпускулу.


НИЛЬС БОР, ДОКТОР ФИЗИКИ

Несмотря на изначальное нежелание принять электроны как субатомные частицы и компоненты всех атомов, сомнений в том, что они обладают огромным потенциалом для объяснения многих электрических явлений, не возникало. В итоге электроны получили определенный авторитет среди физиков не как компоненты атома, а только как средство объяснения электрической проводимости. Поэтому нет ничего удивительного в том, что молодой и амбициозный ученый Нильс Бор посвятил докторскую диссертацию одной из модных тогда тем — роли электронов в электрической проводимости металлических материалов.

Написание диссертации не было обычным делом для студентов университетов в начале XX века. В среднем докторскую степень по естественным и математическим наукам получали всего три-четыре студента в год.

Братья Бор были среди этих избранных, и, что любопытно, Харальд стал доктором на несколько месяцев раньше, чем его старший брат Нильс. Данное событие было отражено в датских газетах: писали, что звезда футбола стала звездой математики.


ЭЛЕКТРОН ТОМСОНА

Как Джозеф Джон Томсон нашел электроны? Конечно же, не с помощью очень мощного микроскопа и не потому, что тогда не существовало такого инструмента — такая визуализация невозможна в принципе. На самом деле современная наука представляет электроны не как маленькие бильярдные шарики с определенными пределами, а как уплотнения, зависящие от волны. Так что слово «частица» в обозначении элементарных частиц ошибочно. Томсон работал с трубками, наполненными газами, которые он подвергал электрическим разрядам, и в 1896 году решил сосредоточиться на типе разряда, который производится в вакууме, — на катодных лучах. Принцип этого явления тот же, что и в старых телевизорах: в стеклянной вакуумной трубке между двумя ее полюсами производится электрический разряд. Томсон заметил, что эти лучи отклоняются как электрическими, так и магнитными полями. Объяснение было только одно: лучи состоят из «корпускул», то есть из маленьких частиц с массой и электрическим зарядом (альтернативное объяснение, что катодные лучи представляют собой волны, несовместимо с этими отклонениями). Расчеты, произведенные Томсоном, предполагали, что носители катодных лучей — отрицательно заряженные частицы, масса которых намного меньше самого маленького атома, известного на тот момент — атома водорода. На рисунке представлена стеклянная трубка, используемая Томсоном: катодные лучи испускаются из точки С, проходят через точки А и В и отклоняются из-за электрического поля между пластинами D и Е. Шкала в конце трубки, на которую попадают катодные лучи, служит для измерения отклонения в зависимости от интенсивности электрического поля. Нечто подобное возможно и с магнитным полем.



Совершенно очевидно, что когда речь идет об атомах, следует использовать тот же язык, что и в поэзии. Поэт заботится не столько об описании фактов, сколько о создании образов и установлении мысленных связей.

Нильс Бор, 1920 год


Это отставание отчасти было связано с методом работы Бора. Для него ничто никогда не было абсолютно законченным. Он всегда находил способ улучшить результат, заменить какой-то термин или выражение, чтобы смысл его слов и уравнений был максимально точным. Свою диссертацию он переписал 14 раз. Даже после защиты в мае 1911 года в переплет собственного экземпляра диссертации он пожелал поместить чистые страницы после каждой напечатанной. Естественно, не для того чтобы визуально увеличить свой труд, а чтобы оставить пространство для дальнейших изменений в этой работе, уже утвержденной комиссией. Бор всю жизнь был перфекционистом, к ужасу издателей и соавторов, он нередко вносил правки в свои научные статьи, отданные в печать.

Тот же подход он применял и в отношении статей других исследователей. Временами он поступал как ребенок, с удовольствием отмечающий оплошность в речи взрослых. Так, работая над диссертацией, он обнаружил некоторые ошибки в статьях Томсона, Планка и других великих ученых эпохи.

В своей докторской диссертации он попытался найти ответы для некоторых выводов из самой распространенной на тот момент теории проводимости электричества в металлах — теории Пауля Друде (1863-1906). Центральная идея состояла в рассмотрении твердых металлических тел в качестве совокупности статичных положительных ионов, где все эффекты проводимости были вызваны электронами, которые вели себя как облако, окружающее положительную структуру. Следует подчеркнуть, что эта модель не включала в себя никакого представления о строении атомов, а лишь предполагала, что электрическая проводимость обязана более или менее свободному движению электронного облака в металле. Исследование привело Бора к недавним работам Томсона, Эйнштейна и Планка, и так он познакомился с проблемами классической физики и с решениями, которые предлагала зарождающаяся квантовая гипотеза.

Профессор Кристиансен с кафедры физики Копенгагенского университета был единственным, кто сумел оценить всю сложность диссертации Нильса Бора, поскольку та была написана на датском языке, что ограничивало ее распространение и оценку международным научным сообществом. Кристиансен посчитал, что работа Бора ставит его на путь, начатый Эрстедом и Лоренцем, а это прочило Дании место на современной научной карте. Совет, данный им молодому Нильсу, заключался в том, что настало время дополнить свое образование в одном из престижных центров физики в Европе.

Последние перед отъездом годы в Копенгагене были омрачены смертью отца Бора, в результате инфаркта в феврале 1911 года, и отмечены встречей с Маргрет Норлунд (1890- 1984), сестрой одного из членов дискуссионного кружка «Эклиптика». Она стала невестой, а позже супругой Нильса и сразу же приняла на себя пожизненные обязанности его секретаря.


ГЛАВА 2 Электроны играют с Бором

Как только стало известно, что в состав атомов входят электроны, многие физики попытались описать их положение и внутриатомное движение. В итоге было сделано заключение, что для строения атома характерна планетарная система: ядро с электронами, вращающимися вокруг него по орбитам. Хотя электроны очень капризны в выборе орбит, Нильсу Бору удалось понять их правила игры — те самые, что включали в себя принципы зарождающейся квантовой механики.

Разочарование. Этим словом можно коротко описать впечатление Бора, когда он наконец-то встретился с Джозефом Джоном Томсоном в Кембридже в 1911 году. В начале XX века этот знаменитый британский университет с почти семивековой историей считался обязательным местом посещения для любого физика. Познакомиться с сэром Дж. Дж., обменяться с ним представлениями, получить его совет и работать в Кавендишской лаборатории было мечтой многих молодых ученых со всего мира, желающих внести вклад в разработку физики атомов и электронов.

В чем был секрет Томсона? Кроме славы, которую ему принесли работа с электронами и Нобелевская премия 1906 года по физике, Томсон был известен тем, что фонтанировал идеями и задавал направление работам молодых исследователей, приезжавших к нему. На самом деле Томсон никогда не был сторонником раскрытия темы до конца — ни с теоретической, ни с экспериментальной точки зрения. Его удовлетворял подход, достаточный для того, чтобы сделать общие выводы (часто рискованные) о любом новом результате, о любом теоретическом рассуждении. Таким образом, в Кавендише можно было найти бесконечное множество незавершенных дел, которые молодые физики (менее творческие, но более упорные) могли разработать детально. Возможно, это было лишь частью проблемы.

Томсон, окруженный все возрастающим числом студентов и исследователей, не мог уделить достаточное внимание каждому из них. Кроме того, он привык давать советы и не был готов взаимодействовать с молодыми полными энтузиазма людьми, которые претендовали на общение на равных с ним, тем более если это был кто-то со слабым английским.

Долгожданный момент настал в сентябре 1911 года. При поддержке фонда «Карлсберг» Бор приехал в Кембридж на один год по постдокторской программе. В его багаже были экземпляр переведенной в спешке докторской диссертации, много иллюзий и несколько английских фраз. Последние два компонента в сочетании очень плохи. Рассказывали, что на первую встречу с Томсоном Бор взял экземпляр книги «Корпускулярная теория материи», опубликованной профессором в 1907 году, открыл ее на конкретной странице и заявил: «Вот здесь не сходится». Хорошо известно, что язык Шекспира крайне изощрен, когда дело доходит до критики, поэтому неудивительно, что непривычному к критике Томсону Бор показался невоспитанным.

Отношения не улучшились и за несколько недель. Томсон поручил Бору экспериментальную работу, связанную с поведением катодных лучей, которая не представляла никакого интереса для молодого датчанина. Кроме того, профессор всегда был занят, и у него никогда не оставалось времени ознакомиться с докторской диссертацией. Между тем Бор пытался усовершенствовать свой английский, читал полное собрание сочинений Чарльза Диккенса со словарем. Единственное, что радовало его в первые месяцы в Кембридже,— это возможность часто играть в футбольной команде университета, а также приезд его брата Харальда на Рождество и постоянные письма из Копенгагена от Маргрет.

Именно на рождественском ужине в Тринити-колледже в Кембридже Бор встретился с выпускником Томсона, новозеландцем Эрнестом Резерфордом (1871-1937), который в то время руководил лабораторией в Манчестере, проведя несколько лет в Канаде. Бор был впечатлен силой характера Резерфорда и его рассказом о своей лаборатории. Тогда он решил не ждать окончания года в Кембридже и переехать в Манчестер при первой же возможности. На самом деле, несмотря на притягательность Кавендишской лаборатории для научного мира, Бор был не единственным, кто почувствовал некоторый застой в Кембридже.

В Манчестере была более молодая и намного более динамичная школа, в ней сосредоточились на конкретной проблеме — радиоактивности, к которой в Кембридже не выказывали интереса. Кроме того, ходили слухи, что эксперименты Резерфорда могут навсегда изменить понимание структуры атома.


УЖИН В ТРИНИТИ-КОЛЛЕДЖЕ

Кембриджский университет тогда и сейчас — это конфедерация частично независимых колледжей; в XIX и XX веках дисциплины средневекового учреждения пополнили физика, химия, философия, право, теология и так далее.

Тринити-колледж — мощнейший в Кембридже. Основанный Генрихом VIII в 1546 году, он все еще является одной из самых богатых институций в Англии, его превосходят только монархия и англиканская церковь. Томсон сначала был студентом, затем фелло и, наконец, магистром Тринитиколледжа, и здесь он ежегодно устраивал ужин для исследователей Кавендишской лаборатории.

Восьмого декабря 1911 года, когда Бор решил покинуть Кембридж, отмечалась 27-я годовщина Томсона во главе Кавендишской лаборатории. Было подано около десяти различных блюд в сопровождении вин, а в конце Томсону пропели песню, сочиненную для этого случая: Oh my darlings, oh my darlings, oh my darlings, ions mine/you are lost and gone forever/ when just once you recombine («О, дорогие, о, дорогие, о, дорогие мои ионы, / вы навсегда потеряны, / если однажды рекомбинируетесь»). Через много лет Бор перенесет в Копенгаген эту неформальную традицию адаптировать современную физику к популярной культуре.

Интерьер столовой Тринити-колледжа.


ИЗОБРЕТАЯ СТРУКТУРУ АТОМА

Появление электрона на научной сцене в 1897 году имело большое значение для понимания материи и электричества. На самом деле в утверждении, что существуют частицы, меньшие, чем атом, заключалось некое семантическое противоречие, поскольку слово «атом» означает именно «неделимый». Но это был не единственный сюрприз. Стало ясно, что электроны несут в себе отрицательный электрический заряд, в то время как, в соответствии с теорией Максвелла, электрический заряд понимался не как вещество, а как свойство материи на границе между двумя материальными средами. Другими словами, никто не говорил о «заряде», а лишь об «электронно заряженном теле». Это ничего не меняло, по крайней мере для Томсона. Но когда электроны оказались отрицательно заряженными частицами, отрицательный электрический заряд стал явлением, хорошо локализованным в пространстве, — явлением редукции.

Следует подчеркнуть, что только отрицательный электрический заряд, казалось, сосредоточивается в этих маленьких электронах. Тогда никто не думал, что может существовать частица, эквивалентная электрону, но с положительным зарядом. И хотя положительный электрон был обнаружен в 1932 году, его свойства были и продолжают существенно отличаться от свойств отрицательных электронов. Что же тогда происходит с положительным зарядом? Как понять его? Как может быть, что атомы, содержащие электроны, являются электрически нейтральными? И наконец, сколько электронов содержит каждый атом и как они организованы?

Поскольку Томсону было свойственно выдвигать крупные гипотезы, неудивительно, что именно он первым подступился к этим вопросам и предложил возможные ответы. В его распоряжении были только атомы, электрически нейтральные в нормальном состоянии, и отрицательные электроны. Его идея заключалась в том, что они присутствуют в большом количестве внутри нейтрального атома. Если атом теряет несколько электронов, он оказывается заряженным положительно, а если получает электроны, то приобретает отрицательный заряд. Чтобы понять эту атомную модель, важно подчеркнуть, что для Томсона не было никакой частицы или материи с положительным зарядом, и единственный способ сделать атом положительно заряженным — это лишить его отрицательных электронов. Именно дефицит или излишек электронов определял электрический заряд атома, положительный или отрицательный соответственно. В 1904 году Томсон выразил это следующим образом:

«Атомы элементов состоят из некоторого числа отрицательно заряженных корпускул, скрытых в сфере однородного положительного заряда».

Это известно как пудинговая модель. Конечно же, не сам Томсон так ее окрестил; более того, название может ввести в заблуждение. И изюминки, и сам пудинг материальны, хотя и имеют различные свойства. В случае с атомом Томсона единственной материей была та, которую составляли электроны. При этом вопрос о числе электронов в каждом атоме довольно прост: если учитывать, что масса каждого электрона (все они равны) в 2000 раз меньше массы самого маленького атома (атома водорода), можно сделать вывод, что внутри каждого атома должны содержаться сотни электронов (около 2000 в случае с водородом или около 32000 в случае с кислородом).

Нельзя не отметить красоту и простоту этой модели атома. С помощью единственного типа частиц, электронов, объяснялась и масса, и заряд атомов. Томсон представлял, что электроны могут образовывать стабильные структуры в форме более или менее концентрических сфер. Только внешние электроны определяют такие физические и химические свойства элементов, как присутствие ионов (атомов с положительным или отрицательным зарядом) в химической связи.


Исследование в прикладной науке ведет к реформам, исследование в чистой науке ведет к революциям.

Джозеф Джон Томсон


Однако иллюзия Томсона длилась недолго. К концу 1905 года некоторые экспериментальные результаты косвенно указали на то, что число электронов в каждом атоме не превышает нескольких десятков. Это означало, что большая часть массы атомов не может состоять в его электронах, а должна быть в части положительного электричества. В чем же тогда заключалась эта положительно заряженная часть атома? Здесь Томсон приступил к исследованию положительных ионов, то есть атомов, потерявших один или несколько электронов, в поисках ключа, который позволил бы понять положительную часть атома.

Но с уменьшением числа электронов проявилась фундаментальная проблема, которую методы физики XIX века не объясняли: нестабильность атома, вызванная излучением электронов. Дело в том, что движение электрически заряженных частиц (электронов) производит множество неожиданных эффектов. Нас интересует потеря энергии при излучении, вызванном их скоростью, а также потеря скорости, вызванная сопротивлением среды.

Чтобы представить себе стабильные конфигурации электронов в море положительного электричества, требовалось, чтобы электроны двигались на больших скоростях; тогда они испускали бы электромагнитное излучение и в результате теряли энергию и скорость и падали в центр атома, который утрачивал бы свои обычные свойства. Когда считалось, что в атоме тысячи электронов, потеря энергии при излучении не представлялась проблемой: электронов было достаточно для того, чтобы энергия одних поглощалась другими и атом мог оставаться стабильным. Но когда число электронов в атоме значительно сократилось, подобная компенсация оказалась абсолютно невозможной, а значит, нельзя было представить стабильный атом. С этой же проблемой в ином контексте сталкивались многие физики того времени, и решил ее только Эйнштейн в статье 1905 года <К электродинамике движущихся тел*, заложившей основы специальной теории относительности.

Одной из актуальных тем в физике в 1911 году были эксперименты Резерфорда и, что самое важное, их истолкование самим новозеландским исследователем. Резерфорд создал в Манчестере школу «радиоактивистов» — исследовательское отделение, сосредоточенное в основном на экспериментальном изучении радиоактивности. Речь шла о явлении, открытом Анри Беккерелем (1852-1908) и супругами Пьером (1859- 1906) и Марией (1867-1934) Кюри, о котором — в отношении его эффектов, свойств и глубинной природы — было известно очень мало.

Уже в 1899 году Резерфорд понял, что речь идет не об одном, а о трех типах излучения, которые различаются электрическим зарядом и способностью проникновения в материю. Он обозначил их первыми тремя буквами греческого алфавита в порядке возрастания энергии: альфа-излучение (а) — с положительным электрическим зарядом, отрицательно заряженное бета-излучение (Р) и гамма-излучение (у), не имеющее заряда. Кроме того, первые два вида излучения явно состояли из корпускул — частиц, обладающих массой. Альфа-частицы имели массу, похожую на массу атома гелия, а бета-частицы... были электронами!

Работы Резерфорда и его команды в Манчестере мало перекликались с интересами Томсона и Кавендиша. С самого начала Резерфорд был заворожен свойствами радиоактивности и сосредоточился на этой новой области. Эти работы обеспечили ему в 1908 году Нобелевскую премию... по химии (так же, как и Марии Кюри в 1911 году). Радиоактивность — явление на полпути между физикой и химией. С одной стороны, изучение его природы, его интенсивности, его свойств при взаимодействии с материей — вопросы, традиционно физические; в то же время выделение веществ, наблюдение их реакций, измерение массы — это задачи химии. Поэтому школа Резерфорда в Манчестере объединила ученых (физиков и химиков) в деле исследования свойств радиоактивности.


ПРОИСХОЖДЕНИЕ РАДИОАКТИВНОСТИ

В начале 1896 года внимание мира было приковано к новому типу излучения — рентгеновским, или икс-лучам.

Анри Беккерель хотел понять возможную связь между этими лучами и уже известным явлением флуоресценции, при котором некоторые вещества превращаются в излучатели света, подвергнувшись интенсивному солнечному излучению. Эксперименты Беккереля были относительно просты: он брал вещества с флуоресцентными свойствами, подвергал их прямому действию солнечного света и изучал их воздействие на фотографическую пластину в темноте. После нескольких облачных дней он с удивлением обнаружил, что фотографические пластины, которые он оставил в том же ящике, что и предполагаемые флуоресцентные вещества, оказались затуманены. Беккерель сосредоточился на этом явлении и попытался выяснить, возможно ли его повторить. Оказалось, возможно. Одно из веществ, с которым он работал, содержащее соли урана, спонтанно испускало доселе неизвестное излучение, из-за которого фотографические пластины затуманивались. Можно сказать, что Беккерель открыл новое внешне необъяснимое явление, вызванное ураном. Но только спустя десятилетия работы исследовательских групп, больших затрат, выдвижения всевозможных гипотез были описаны характеристики этого явления и состоялся переход от урановых лучей к радиоактивности. На самом деле Беккерель не был заинтересован в продолжении изучения «своих» лучей. Именно супруги Кюри и Эрнест Резерфорд сделали их главной темой своих исследований. Так, они выяснили, что это излучение характерно не только для урана: его испускают и другие тяжелые элементы (последние в периодической таблице) — радий и торий. Но более важно то, что им удалось выделить новый элемент, названный полонием в честь Польши, родины Марии Кюри.

Анри Беккерель.


Каким образом радиоактивность связана с составом атома? Вскоре выяснилось, что радиоактивность — атомное явление. Альфа- и бета-частицы испускались атомом, что наводило на мысль о том, что это лишь компоненты радиоактивных атомов (сложнее было с у-излучением, которое больше походило на свет, чем на частицу). Кроме того, Резерфорд доказал, что радиоактивность — не инертный процесс, она меняет природу веществ: при испускании радиоактивности один элемент превращается в другой, близкий к нему в периодической таблице. Другими словами, радиоактивность является процессом (спонтанным или индуцированным, доподлинно известно не было), который преобразует элементы.

В итоге, хотя и косвенно, радиоактивность также оказалась очень полезным инструментом для анализа структуры атомов. После ее открытия ученые переключились на изучение всех типов радиации, подвергая ее воздействию различные материалы, различную толщину одного и того же материала, под разными углами падения. При этом была получена важная информация об энергии излучения, его интенсивности и его электрическом разряде. Как раз такие эксперименты ставили в Манчестере Резерфорд и его коллеги, в частности немец Ханс Гейгер (1882-1945) и молодой британец Эрнест Марсден (1889-1970). С 1909 года Гейгер и Марсден изучали взаимодействие а-радиоактивности (которая больше всего интересовала Резерфорда) с металлическими поверхностями и поняли, что падающий пучок а-частиц не пересекает металлы линейно, а подвергается различным отклонениям — дисперсии. Это было естественно, поскольку в металле атомы образуют довольно геометрическую структуру, поэтому можно было ожидать, что а-частицы будут отклоняться от своих траекторий, проходя рядом с атомами. Но не было нормальным то, что при повторении аналогичного опыта с очень тонкими поверхностями а-частицы испытывали большие отклонения.

Резерфорд присоединился к Гейгеру и Марсдену, они пересмотрели эксперимент и получили сложный для понимания результат: при пропускании потока а-частиц через очень тонкую пластинку из золота большая их часть пересекала металл без изменений, но несколько частиц после столкновения с металлом «рикошетили» и отлетали в противоположном направлении (см. рисунок 1). Позже Резерфорд утверждал, что это было столь же удивительно, как если бы пули рикошетили от папиросной бумаги. Раз атом являлся, как считал Томсон, однородной массой положительного заряда с более или менее равномерным распределением электронов, этот результат не имел смысла: можно понять легкую, но не столь явную дисперсию.

РИС.1


Таким образом, в 1911 году Резерфорд предложил полностью изменить представление об атоме. Возможно, положительная часть неоднородна и не занимает весь атом, она могла быть сконцентрирована в центре атома, образуя очень маленькое ядро, вокруг которого двигались электроны. Это похоже на планетарную систему, где центр занимает ядро, обладающее большой массой и всем положительным зарядом атома. Это объясняло, почему большинство а-частиц (заряженных положительно) почти не диспергировались, но некоторые испытывали такую большую силу, что она заставляла их рикошетить: это были те частицы, которые случайно сталкивались с ядром одного из атомов.

Однако предложение Резерфорда осталось практически незамеченным. Это не было великой революцией, великим открытием, о нем не писали в газетах, его не обсуждали в кафе, оно даже не привлекло внимания ученых, которые восприняли его как частный случай поведения α-частиц. Кроме того, Резерфорд не интересовался теоретической физикой, он был экспериментатором и не мог развить теоретические следствия из данной модели.

С другой стороны, у Резерфорда эта идея возникла не только на основе его с Гейгером и Марсденом экспериментов: это предложение должно рассматриваться в контексте стремления понять, что же такое α-частицы. Уже было сказано, что они обладают массой, схожей с массой атома гелия, и заряд их в два раза превосходит заряд электрона, но при этом он положительный. Информация о радиоактивности оставалась такой скудной, что никто еще не знал, существуют α-частицы в атомах или образуются при испускании из них. Резерфорд был ярым сторонником первого варианта, поскольку уже некоторое время считал, что α-частицы входят в состав структуры атома. До представления об атоме с ядерной структурой оставалась пара шагов.


БОР В МАНЧЕСТЕРЕ

Если Кембридж на тот момент обладал семивековой историей, Манчестерскому университету было всего-то несколько десятилетий от роду. Город был эпицентром промышленной революции и в начале XX века в нем была сосредоточена большая часть британского производства, где каждый раз все более влиятельная и образованная буржуазия способствовала развитию науки и искусства. Так был учрежден местный университет, который в 1903 году получил имя королевы Виктории.

Нильс Бор приехал в Манчестер в марте 1912 года с надеждами, возродившимися после неудачного опыта с Томсоном. Поскольку это был мировой центр экспериментальной радиоактивности, Бор согласился пройти элементарную практику работы в лаборатории, после чего Резерфорд поручил ему изучение поглощения α-лучей в алюминии. Но Бор скучал в лаборатории: его большой страстью была теоретическая физика, великие понятия, математические и философские составляющие научных новшеств, а не изнуряющий и рутинный ручной труд экспериментатора. В этом Резерфорд и Бор были антиподами. Первый ненавидел громоздкие умозаключения и чрезвычайно сложные математические теории. У второго не хватало терпения на многочасовую работу с веществами и на бесконечные повторения экспериментов. Возможно, именно поэтому с годами их связала крепкая дружба и профессиональное сотрудничество на уровне организаций, когда после Первой мировой войны они возглавили самые значимые центры физики в Кембридже (Резерфорд) и Копенгагене (Бор).


РАДИОАКТИВНЫЕ РЯДЫ

Единственное, что было известно о структуре атомов к 1910 году,— то, что они содержат электроны, часть из которых может отделяться, после чего атом оказывается заряженным положительно; или, наоборот, атом может принять некий внешний электрон и обрести отрицательный заряд. За век до описываемых событий заряженные положительно или отрицательно атомы называли «ионами». Новое явление радиоактивности говорило о другом типе излучения, намного более сильном, чем потеря или поглощение электронов, и оно предполагало изменение химических (а не только электрических) свойств атомов. Во второй половине XIX века Дмитрий Менделеев создал таблицу, в которой организовал известные на тот момент химические элементы. Эта периодическая таблица, где по горизонтали они располагаются по возрастанию измеренной массы атомов, а по вертикали — по своим химическим свойствам, стала одним из самых простых и полезных инструментов развития химии; она даже служила для предсказания существования неизвестных до тех пор химических элементов. Один из компонентов таблицы, не все следствия которого еще были известны, — положение элемента согласно его «атомному номеру». Так, например, водород — первый элемент; углерод — шестой; хлор — 17- й, а золото занимает место 79. Этот атомный номер (обычно обозначаемый Z) оказался определяющим при понимании преобразований из-за радиоактивности: испускание α-частицы предполагает потерю двух порядковых номеров в периодической таблице (уменьшение Z на две единицы), в то время как испускание β-частиц увеличивает атомный номер Z на единицу. Значение всего этого еще предстояло определить.

Например,на диаграмме показаны радиоактивный ряд урана и его преобразование в другие элементы вплоть до свинца.



Вначале показалось, что Манчестер — также не идеальное место для Бора. Почти все специалисты занимались там экспериментальной физикой, и едва нашлась пара человек, которых интересовала теория. Однако эти двое ученых оказались хорошими собеседниками, более того, они повлияли на выбор Бором направления исследований.

Первым был Дьёрдь де Хевеши (1885-1966), происходивший из венгерских аристократов и хорошо знавший радиоактивные ряды. Второй — Чарльз Галтон Дарвин (1887-1962), которого Бор характеризовал в письмах своему брату как «внука настоящего Чарльза Дарвина», создателя теории естественного отбора. Молодой Дарвин был из Кембриджа и, получив диплом, решил искать новые идеи в Манчестере.

Побеседовав с Хевеши, Бор предположил, что происхождение радиоактивности, как α, так и β, кроется в атомном ядре, о котором заявил Резерфорд. Бор совещался с Резерфордом пять раз, но тот, не принимая умозрительных рассуждений, не пожелал, чтобы Бор опубликовал свою идею. Как возможно, что p-радиоактивность, испускание электронов, исходит от ядра, если он сам предположил, что ядро — это положительно заряженная часть атома? В этом не было особого смысла. Бор принял критику Резерфорда и отказался от идеи публикации.

Дарвин, в свою очередь, стремился объяснить математически потерю энергии α-частиц при их прохождении через разные материалы. Если Резерфорд прав, большинство α-частиц (которые не сталкиваются с ядром) подвергались бы некоторому отклонению во время столкновения с электронами атомов, расположенных далеко от ядра. Так как электроны примерно в 8000 раз меньше α-частиц, эти столкновения производили бы лишь незначительные отклонения и легкие потери энергии. Однако, помимо прочих неизвестных, загадкой оставалось и расположение электронов в атоме. Вопрос был важным, поскольку, представив себе столкновения между α-частицами и электронами, мы убедимся: вовсе не одно и то же, если последние распределены произвольно, если они все сосредоточены на внешней поверхности атома или если они организованы по орбитам.


Изолированные материальные частицы — это абстракции, свойства которых могут быть определены и зафиксированы только при их взаимодействии с другими системами.

Нильс Бор, «Теория атома и принципы описания природы» (1934)


Работы двух его коллег из Манчестера, особенно Дарвина, вызвали у Бора интерес к структуре атома, а именно к конфигурации электронов ядра в том виде, в каком это представлял Резерфорд. Но как вообразить стабильную структуру электронов вокруг ядра? С тех пор как Ньютон сформулировал в конце XVII века теорию гравитации для объяснения движения планет вокруг Солнца, многие физики и математики занимались расчетами для описания всех возможных орбитальных систем, существующих и отсутствующих. В системе, где тела притягиваются силами, пропорциональными расстоянию, единственная невозможная система — та, в которой тела не движутся. Если бы планеты и спутники не находились в движении, они притягивались бы друг к другу, пока не упали бы друг на друга и на Солнце. То же самое происходит с электронами в ядерном атоме: электроны должны двигаться на больших скоростях, чтобы избежать «падения» на ядро.

Движение электронов представляло собой проблему, когда их число было малым, потому что само движение являлось причиной потери энергии и столкновения с ядром. Но это не первая проблема, с которой столкнулся Бор. Его заботило, как получить информацию о движении электронов в настоящих атомах. Вспомним, что не существует микроскопа, который позволил бы заглянуть внутрь атома. В астрономии с движением планет все было понятно: когда Ньютон сформулировал теорию гравитации, в его распоряжении имелось очень точное описание планетных орбит, которое сделал Иоганн Кеплер за несколько десятилетий до этого. Но в случае с атомом, казалось, все было по-другому.

С этим новым интересом к структуре атома завершился первый опыт постдокторской работы, и Бор вернулся в Данию летом 1912 года. На родине ему предстояло множество дел. Сначала нужно было найти подходящую должность. Это оказалось непросто: в Дании существовал только один университет, и за время отсутствия Бора на кафедре физики произошли изменения. Очевидно, что хотя он и обладал блестящим умом, он был слишком молод, чтобы возглавить эту кафедру, и должность получил Мартин Кнудсен (1871-1949). Бор же стал преподавать физику студентам медицины и прочих специальностей.

Другой его целью тем летом была свадьба. После нескольких лет отношений с Маргрет пришло время жениться. Пара сочеталась 1 августа в муниципалитете Слагельсе; церемония заняла едва ли несколько минут и была проведена начальником полиции. Ввиду застенчивости и гиперактивности молодого Бора празднование максимально сократилось, к разочарованию матери Маргрет, которая надеялась, что ужин продлится около трех часов (вечность для Бора). Молодожены отправились в свадебное путешествие в Англию, а именно в Кембридж и Манчестер, где Бор продолжил размышлять и собирать информацию о структуре атома. Так был заключен брак, в котором физика стала частью семейного ядра.


АТОМ БОРА

В XIX веке, несмотря на то что не все принимали само существование атомов, некоторые представляли себе, что в атоме должна происходить некая внутренняя деятельность, возможно в виде вибраций или пульсаций, как, например, у мыльного пузыря. Это было еще до того, как на сцене появился электрон, а вместе с ним возникла идея о внутренней структуре атома. Подобные размышления были вызваны необходимостью объяснить спектр элементов, типы света, который испускает каждый элемент в знак собственной идентичности. Электромагнитная теория Максвелла показала: свет есть электромагнитное излучение, результат периодического движения тел с электрическим зарядом. Следовательно, если атомы испускают свет, внутри них должно существовать какое-то движение.

Электроны предполагали новую переменную, которая может объяснить спектр химических элементов. Возможно, свет, испускаемый атомами, — это результат вибраций (или другого типа периодического движения) электронов. Томсон, немецкий ученый Йоханнес Штарк (1874-1957) и ряд других исследователей безуспешно пытались учесть экспериментальные данные спектроскопии в своих предположениях о структуре атома. Начиная с февраля 1913 года Нильс Бор также занимался этим, хотя сосредоточился исключительно на спектре атома водорода. Уже в марте он отправил Резерфорду статью для публикации в «Философском журнале*, самом молодом научном издании того времени. Это была первая из трех статей, опубликованных им в том году и навсегда изменивших атомную физику.


СПЕКТРОСКОПИЯ, ИЛИ ИЗ ЧЕГО СДЕЛАНО СОЛНЦЕ

Благодаря научной фантастике на сегодняшний день уже несколько поколений совершили межгалактические путешествия, однако на самом деле человек смог лишь несколько раз долететь до Луны. Имеющееся у нас знание о других планетах и галактиках — результат не того, что мы были там, а того, что само пришло к нам оттуда. Особенно это справедливо в отношении Солнца и других звезд. Сколько бы путешествий в гиперпространстве ни осуществляли персонажи научной фантастики, даже они не осмеливались приближаться к Солнцу. Тогда откуда известно, что Солнце состоит в основном из водорода, небольшого количества гелия и некоторых более тяжелых элементов? Это возможно благодаря свету, который испускает звезда, а именно спектральным линиям. Ньютон первым понял, что естественный свет состоит из целого ряда цветов радуги. С помощью призмы он заметил, что обычный белый свет — это результат сочетания нескольких различных «светов», и каждый из них можно изучать отдельно. Но не каждый свет белый. Если нагреть, например, медь, получается сине-зеленый свет; литий дает красный свет, а натрий — желтый. У каждого химического элемента есть собственная визитная карточка — свет. Так в XIX веке развивалась наука спектроскопия, анализирующая тип света, испускаемого определенным химическим веществом. Технология была относительно простой. Сначала нагревали изучаемое вещество в газообразном состоянии, пока оно не начинало испускать собственный свет. Его проводили через призму, которая разлагала свет, как в случае с радугой. Так как это разложение было крошечным, получившийся спектр (цвета) наблюдали затем через микроскоп. Информация о спектре каждого элемента была все более точной. Едва стали детально известны спектры элементов, свойственных Земле, можно было сравнить их со спектром света, посылаемого Солнцем и другими небесными телами. Поскольку спектр солнечного света во многом совпадает со спектром водорода, пришли к заключению, что Солнце состоит в основном из этого элемента.

Спектроскоп, разработанный Густавом Кирхгофом и Робертом Бунзеном, 1860 год.


Бор и любой, кто пытался объяснить спектр элементов на основе движения электронов, сталкивались с двумя основными взаимосвязанными проблемами. О первой уже было сказано ранее: движение электронов для начала предполагало потерю энергии, которая приговаривала атом к смерти. Но была также и вторая загадка: факт, что спектры обычно дискретны, а не непрерывны.

Каждый элемент испускает определенные цвета, или частоты. Обычно они визуализируются на фотографической пластине в виде ряда параллельных лучей, каждый из которых соответствует определенной частоте. Но если происхождение этих частот, этого света, испускаемого атомами, заключалось в какой-то форме потери энергии атомными электронами, почему свет наблюдается только на некоторых частотах, а не на непрерывном потоке света? Другими словами, если электроны постепенно тормозят, предполагается, что в процессе торможения они пройдут через все возможные значения энергии, как автомобиль, снижающий скорость с 80 до 20 км/ч, проходит через все промежуточные скорости. Ведь природа (по крайней мере так думали ранее) не должна делать скачков.

Именно здесь Бор выдвинул новую несколько рискованную гипотезу, которую физики того времени, особенно британские, в основном не приняли: гипотезу Планка. В конце 1900 года, практически от отчаяния, профессор теоретической физики Берлинского университета Макс Планк (1858-1947) объяснил давнюю проблему излучения, предположив, что взаимообмен энергией на микроскопических уровнях не непрерывный, а происходит малыми дозами; то есть природа, похоже, все-таки делает скачки. Также нужно знать, что только после 1906 года, когда молодой и почти неизвестный Альберт Эйнштейн (1879-1955) воспользовался той же самой гипотезой для объяснения давней аномалии удельной теплоемкости твердых тел, некоторые немецкие физики начали воспринимать гипотезу Планка всерьез.

С учетом этих предпосылок Бор начал размышлять немного по-другому. Вместо того чтобы диктовать атомам, как им себя вести, согласно законам классической физики, он принял имевшуюся у него информацию, полученную в основном из спектроскопии: атомы в целом были стабильными, а при нагревании испускали свет конкретных частот, свой собственный спектр. Тогда он сосредоточился на самом простом случае — с атомом водорода.

Сегодня доказано, что число электронов в определенном атоме равно его атомному номеру, Z То есть у водорода только один электрон, у гелия два и так далее. Как Бор представил себе структуру атома водорода? Первым шагом было буквально следовать гипотезе Резерфорда и поместить ядро, обладающее массой и положительным электрическим зарядом, в центр, и тогда электрон окажется на орбите вокруг этого ядра. Исходя из экспериментального факта, что водород, как и большинство элементов, стабилен в нормальных условиях, Бор предположил, что и эта орбита стабильна и нужно забыть о возможном излучении, которое она должна испускать согласно классическим теориям.

Следует признать, что в науке обычно все делается не так. Если молодой недавно завершивший обучение человек имеет только один год опыта работы за границей и неспособен объяснить определенное явление, скорее всего ему следует продолжить учебу. Пренебрежение научными предпосылками своего времени в большинстве случаев говорит о высокомерии и чревато растрачиванием своего научного будущего. На самом деле, если бы Бор ограничился только тем, что изложено в предыдущем абзаце, то вышла бы просто гипотеза, не имеющая серьезных оснований. Однако теоретическая физика заключается не в одном только представлении моделей, но и в использовании их для вычисления и сравнения этих расчетов с лабораторными данными. Бор так и поступил, и в связи с этим его модель перестала быть умозрительным предположением и превратилась в прогноз.

Чтобы получить спектр определенного химического элемента, его нужно нагреть — другими словами, снабдить энергией. Этот избыток энергии в структуре атома позволяет электрону вращаться на большем расстоянии от ядра (если снабдить его слишком высокой энергией, он даже может вылететь из атома и оставить ядро в одиночестве). Через некоторое время возмущенный электрон вернется в свое исходное состояние, высвобождая лишнюю энергию в виде излучения, наблюдаемого на спектре (см. рисунок 2).

До этого момента Бор представлял атом как планетную систему, в которой планета (электрон) имеет привилегированное и неприкасаемое положение, его основное состояние. Неожиданный скачок наблюдался у возмущенных орбит. Бор предположил, что электроны могут занимать только конкретные орбиты с определенным значением энергии, что любое промежуточное состояние для них закрыто. Если проводить визуальную аналогию, атом представляет собой скорее лестницу, чем склон: электроны могут находиться только на ступенях и никогда — в их промежутках. Именно здесь датский ученый ввел постоянную Планка: расстояние между «ступенями», между орбитами, должно быть кратно этой постоянной. Электроны могут занимать только такие орбиты энергии, чтобы различие между ними было кратно постоянной Планка.

РИС . 2


На основе этой модели Бор получил спектр атома водорода, который был прекрасно известен уже несколько десятилетий. Каждая линия спектра (каждая частота испускаемого света) соответствовала переходу электрона с одной орбиты на другую, меньшую. Так модель Бора перестала быть чистым предположением вроде тех, что обычно выдвигал Томсон, и превратилась в модель, обладающую прогностической способностью. Впервые атомная модель количественно (а не только качественно) объяснила детали спектра атома водорода.


АТОМЫ КАК СОЛНЕЧНЫЕ СИСТЕМЫ

Бор не был первым, кто ввел постоянную Планка для объяснения атома.

В 1912 году кембриджский астроном Джон Уильям Николсон (1881-1955) предположил, что электроны вращаются вокруг гипотетически положительного ядра по орбитам, угловой момент которых кратен постоянной Планка. Поскольку Николсон был астрономом, неудивительно, что даже до экспериментов Резерфорда он представлял себе атомы в виде микроскопических солнечных систем.

Электроны, вероятно, также колеблются с частотой, кратной той же самой постоянной, как показано на рисунке. Представим себе, что мы движемся на карусели по кругу и одновременно периодически колеблемся сверху вниз, при этом в начальной точке круга есть дверь, через которую мы проходим каждый раз. когда совершаем полный оборот. Таким образом, важно, чтобы наши вертикальные колебания находились в фазе с вращательным движением. То есть каждый раз, когда мы совершаем полный оборот, наше вертикальное колебание должно поместить нас в исходное положение, чтобы мы могли пройти через дверь. Для некоторых современников модели Бора и Николсона были сходными, и даже говорили о модели Бора — Николсона. Но это неверно. В случае модели астронома излучение спектра вызвано колебанием электронов внутри орбиты. Если бы это было так, допускалось бы присутствие других орбит с другими колебаниями. Однако в модели Бора излучение спектра внутри орбиты вызывало не колебание электронов, а переход с одной орбиты на другую. Эта разница важна, потому что в случае модели Бора понятие орбиты перестает быть основным, и значимость обретает именно переход с одного уровня энергии на другой. И в этом корень постулатов квантовой механики.



Очевидно, что не все приняли эту модель. В 1913 году не было ни празднований, ни семинаров, посвященных атому Бора, эта новость не попала в популярные газеты и журналы. Дело в том, что несмотря на прогностическую способность и математическую точность, атом Бора противоречил многим постулатам физики того времени. Почему электроны могут быть только на определенных орбитах? Почему провозглашалось невозможным нахождение электрона на полпути между двумя орбитами? Каков механизм, обязывающий электроны вести себя таким образом? Какие ограничения мешают им двигаться куда угодно внутри атома? Если сравнить это с Солнечной системой, хотя и нет никакой планеты между Землей и Венерой или между Венерой и Меркурием, законы Ньютона подобной возможности априори не исключают. Отсутствие такой планеты — чистая случайность, результат того, как расположились существующие планеты вокруг Солнца. Но Бор говорил, что электроны не могут занимать другие орбиты кроме установленных квантовым отношением. Нет смысла задаваться вопросом о переходе с одной орбиты на другую: электроны находятся либо на одной, либо на другой, и никогда — между ними двумя!

Сам Резерфорд, получив рукопись, прежде чем отправить ее на публикацию, сообщил Бору:

«В твоей гипотезе мне видится серьезная трудность, которая, несомненно, не скрылась и от тебя. Как электрон решает, какую частоту он будет излучать, чтобы перейти из одного стационарного состояния в другое? Как будто (...] электрон знает изначально, на каком уровне он остановится».

Бор утверждал в своей статье, что мы должны забыть о вопросе процесса перехода с одной орбиты на другую. Этот вопрос не имел смысла, потому что предполагал наличие непрерывности физики, а Бор, как Планк и Эйнштейн, был уверен в том, что природа, по крайней мере на атомном уровне, действует скачкообразно. Именно поэтому большинство физиков, сначала в Англии, а затем в Германии (в Гёттингене и Мюнхене), приписали теорию Бора к чисто нумерологическим случайностям. Несмотря на то что числа совпадали, игнорирование вопроса о процессе перехода могло означать только интеллектуальную лень. Физика не должна довольствоваться числовыми совпадениями и обязана представлять механические процессы, вызывающие эти явления. Изменение в направлении мысли, которого требовал Бор, которому аплодировал Эйнштейн и которое невольно задал Планк, казалось, идет против самой физики и исследования материальных причин физических явлений.


МАНЧЕСТЕР — КОПЕНГАГЕН: ДВЕ ПОЕЗДКИ ТУДА И ОБРАТНО

Осенью 1913 года у Бора была очень нестабильная нагрузка, поскольку он вел вводный курс физики для студентов-медиков. Кроме того, как уже было сказано, единственную кафедру в Дании по этой дисциплине недавно предоставили Кнудсену, так что было маловероятно, разве что только по чистой случайности, что эта кафедра освободится в ближайшем будущем. Бор не впал в отчаяние и предложил Копенгагенскому университету создать новую кафедру теоретической физики. Это предложение было несколько абсурдным. В XIX веке во всех университетах мира обычно присутствовало по одной кафедре на дисциплину (одна для физики, другая для химии и так далее). Преподавателю, занимающему кафедру, ассистировали ряд помощников и лекторов; и если те желали развиваться, им приходилось ждать, пока глава кафедры этого или другого университета уйдет на пенсию и освободит место.

Но науки нестатичны, и часто университетская система должна адаптироваться (встречая иногда большое сопротивление) к возникновению новых дисциплин и их ответвлений. Именно это произошло в Германии во второй половине XIX века, когда были созданы несколько новых кафедр для промежуточной между математикой и физикой дисциплины — теоретической физики. Тогда 27-летний Бор решил, что настал момент основать новую кафедру в Копенгагенском университете и возглавить ее: настолько он был уверен в себе. К тому же у него имелись рекомендательные письма многих копенгагенских преподавателей и всемирно известных лиц, таких как его наставник в Манчестере Эрнест Резерфорд.

Этой кафедры пришлось дожидаться, но тут появился другой вариант — временная должность лектора в Манчестерском университете, которую Резерфорд предложил ему на 1914-1915 учебный год. Так Бор вернулся в тот город, где он задумал свою атомную теорию, но... в неудачный момент. Эрцгерцог Франц Фердинанд, наследник трона Австро-Венгрии, был убит в Сараево 28 июня 1914 года. В результате началось то, чего многие уже давно боялись,— масштабная война, охватившая почти все европейские державы. Формально Дания соблюдала нейтралитет, так что Бор смог занять новую должность, предложенную в Манчестере. Но обстановка в университете омрачилась.

Надеясь, что конфликт продлится только несколько недель, многие молодые люди ушли на фронт, и университеты опустели. Вести о потерях в боях оказались неожиданностью, и вскоре стало понятно, что война продлится намного дольше, чем все думали. Молодых британских ученых отозвали с полей сражений домой и привлекли к сотрудничеству с Комитетом научных и промышленных исследований (Board of Invention and Research) для разработки нового оружия и улучшения военной логистики. Комитет возглавил Томсон, он же координировал все работы. Резерфорд занимался исследованиями методов обнаружения ужасных немецких U-Boats, первых подводных лодок, и в итоге достиг успеха с помощью эха звуковых волн (сонара). Будучи иностранцем, Бор не мог работать над военными проблемами, поэтому он сосредоточился на собственных исследованиях и попытался улучшить свою модель атома. Как ни парадоксально, война обеспечила ему и его супруге Маргрет один из самых спокойных периодов в их жизни.

Нильс Бор с супругой Маргрет Норлунд на мотоцикле, около 1930 года.

Снимок, сделанный в Института теоретической физики в Копенгагене (ныне Институт Нильса Бора). Слева направо: Георгий Гамов, Чарльз Лауритсен, Нильс Бор, Эббе Расмуссен, Чандрасекхара Раман и Оскар Клейн.


Весной 1916 года Бор получил новость, что датское правительство утвердило создание кафедры теоретической физики в Копенгагенском университете, и чета решила вернуться на родину. Поскольку это было королевское назначение, требовалось пройти собеседование с королем. Это официальное мероприятие в некотором роде походило на его первую встречу с Томсоном за несколько лет до этого. Король заговорил с Бором о своей страсти к футболу. «Так вы же еще и известный футболист», — сказал монарх, но Бор сразу ответил, что знаменитый футболист — его брат Харальд. Очевидно, что протоколом не были предусмотрены такие ответы, и встреча быстро завершилась. Снова стремление Бора к абсолютной точности поставило его в неловкое положение.

С небеспочвенным оптимизмом Бор не довольствовался одной только кафедрой и сразу же сделал запрос на создание института теоретической физики, оборудованного для экспериментов с радиоактивностью, спектроскопией и некоторыми другими актуальными явлениями. В своем письме университетскому руководству Бор объяснял то, что многие физики того времени уже чувствовали:

«До сегодняшнего дня было достаточно причин предполагать, что так называемые классические механика и электродинамика составляют прочную основу для наших научных идей, [...] но в последнее время было доказано, что эта теоретическая база терпит крах в основополагающих аспектах».

Физика оказалась в кризисе, и требовалось переформулировать ее основные принципы, для чего, как утверждал Бор, ему были нужны не один-два ассистента, а целый институт, который стал бы фабрикой или двигателем новой физики. План был одобрен, и ученый получил деньги — государственные и частные — на возведение Института теоретической физики в Копенгагене. Сегодня он располагается в том же самом здании (хотя с 1965 года называется Институтом Нильса Бора). Несмотря на социальную, экономическую и политическую нестабильность, царившую в Центральной Европе после Первой мировой войны, которая коснулась и Дании, все происходило очень быстро: утверждение, строительство, открытие, состоявшееся в 1921 году, и поступление первых докторантов.

С другой стороны, Бор не переставал получать приглашения из Беркли и Манчестера, ему предлагали читать курс атомной физики в университетах Геттингена и Мюнхена. Все это истощило Бора, и в начале 1921 года ему пришлось взять несколько месяцев отпуска, чтобы утомление не переросло во что-то большее.


МОДЕЛЬ БОРА — ЗОММЕРФЕЛЬДА

Может показаться, что на время войны физика атома полностью замерла, поскольку большинство исследователей были вынуждены заниматься другими темами или поскольку Бор переключился на создание Института теоретической физики в Копенгагене. Отчасти так и было, но только отчасти. В Манчестере Бору, гражданину Дании, не позволяли заниматься «военной» физикой, но другие физики также не внесли никакого вклада в вооруженный конфликт, в основном потому что их знания не могли сослужить службу никакому министерству обороны. Это был случай Макса Планка, специализировавшегося исключительно на теоретической физике, а также Арнольда Зоммерфельда (1868-1951), профессора теоретической физики в Мюнхене.

Во время войны Зоммерфельд продолжал преподавать фундаментальную науку и заниматься популяризацией физики (он даже читал лекции солдатам в увольнении). Значительную часть своей карьеры ученый посвятил пониманию происхождения спектральных линий различных атомов. Так что он был одним из первых, кто оценил как преимущества модели Бора, так и ее ограничения. Главное ограничение заключалось в том, что Бор мог объяснить только самый простой атом (атом водорода) и только при первом приближении. На самом деле уже пару десятилетий была известна так называемая «тонкая структура спектра», в которой каждая линия оказывается дублетной, и первая модель Бора ее не объясняла.

Чтобы усовершенствовать модель, Зоммерфельд ввел два взаимосвязанных изменения. Для начала он провел аналогию с планетными орбитами Солнечной системы и допустил, что орбиты электронов необязательно круговые, а, например, эллиптические. Действительно, математика, описывающая возможные орбиты тела вокруг центра из-за притяжения центральной силы, обратно пропорциональной расстоянию (как в случае с гравитацией или электростатической силой), прогнозирует, что орбиты — это эллипсы; круговые орбиты — лишь частный случай эллипса. Кроме того, Зоммерфельд применил второе квантовое условие к эксцентриситету («удлинению») эллипсов: так же, как в модели Бора допускался скачок с одной орбиты на другую, при условии, что энергия между двумя орбитами кратна постоянной Планка, рассматривались только эллиптические орбиты, эксцентриситет которых соответствовал бы орбите с угловым моментом, кратным постоянной Планка.

Как и в случае с планетами и особенно с кометами, тело, вращающееся по эллипсу вокруг центральной силы (Солнца или атомного ядра), испытывает большую скорость, когда оно находится рядом с центром, чем когда оно далеко от него. Например, поступательное движение Земли быстрее, когда в северном полушарии зима и когда Земля ближе всего к Солнцу, но медленнее летом. Зоммерфельд учел это и связал с общей теорией относительности Эйнштейна, которая тогда широко обсуждалась. Согласно Эйнштейну, поведение электрически заряженных тел испытывает изменения при ускорении или замедлении. Так, приняв эллиптичность орбит, Зоммерфельд смог понять, почему спектральные линии всегда появляются дублетами или триплетами: для одного и того же уровня энергии (квантовое число n) из-за различных эксцентриситетов могут быть различные модели поведения (квантовое число l).

Кроме того, эллиптические орбиты не были статичными, их ось вращалась (это называется «прецессионным движением», как в случае с волчком), из-за чего было введено другое квантовое число. Зоммерфельд предположил, что это прецессионное движение также управляется квантовыми скачками, то есть что не все положения орбит возможны, а только те, чей оборот кратен постоянной Планка. Таким образом, от одного квантового числа в начальной модели Бора состоялся переход к трем, к числам, соответствующим скачку энергии, эксцентриситету орбиты и прецессионному движению.

РИС 3

РИС. 4


Все орбиты на рисунке 3 (обозначенные как s,p и d) имеют одну и ту же энергию, но различный эксцентриситет. Из-за этого скорость электронов изменяется, также, в соответствии со специальной теорией относительности, меняется модель их поведения, что порождает новое квантовое число, а следовательно и дублетность и триплетность спектральных линий определенного энергетического уровня. Наконец, каждая эксцентричная орбита (см. рисунок 4) может вращаться в плоскости своего вращения, и это дает третью степень свободы, которую связали с третьим квантовым числом.

С учетом глубокого интереса Зоммерфельда к спектральным линиям, его великая книга, в которой представлены его улучшения атома Бора, получила называние Atombau und Spektrallinien («Строение атома и спектры»). С 1919 по 1929 год книга выдержала пять переизданий (каждое из них было толще предыдущего) и стала для многих физиков источником знаний в области квантовой физики.


ГЛАВА 3 Катализатор квантового мира

Введением постоянной Планка в структуру атома Бор обобщил так называемый «принцип соответствия», который связывал традиционную физику с новыми квантовыми принципами. Но в середине 1920-х годов эта связь была прервана, уступив место драматичному повороту в самом представлении о том, что такое физика. События развивалась под покровительством Бора и положили начало тому, что получило название «копенгагенской школы».

Первая мировая война закончилась в ноябре 1918 года. Версальский договор, подписанный в июне следующего года, преобразил карту Центральной Европы до неузнаваемости: полностью исчезла Австро-Венгерская империя, была унижена Германия. Экономический, политический и культурный бойкот, который победители объявили побежденным, больше походил на реванш, а не на мир. Многие британские и французские ученые считали своим патриотическим долгом прекратить всякое общение с немецкой наукой. Отменились подписки на немецкие журналы, а немецким исследователям было отказано в участии в британских и французских конгрессах. Первым, кто нарушил эти правила, был британец Артур Эддингтон (1882-1944), квакер и пацифист, подтвердивший в 1919 году общую теорию относительности Эйнштейна, физика немецкого происхождения.

Поскольку Дания сохраняла нейтралитет в конфликте, Бор увидел в этом стечении обстоятельств возможность превратить свой недавно созданный Институт в Копенгагене в мировой центр теоретической физики, в место, где ученые со всего мира смогли бы быть свободными от политических предубеждений. Поскольку учреждение было новым, Бор создал его по своему усмотрению. В его центре отсутствовала иерархия, здесь не прекращались споры и обмен идеями, среди ученых, которые были в основном моложе Бора, поддерживалась неформальная обстановка, требовалось ставить под сомнение любую идею и доводить до конца любую гипотезу. Благодаря финансированию из фондов «Карлсберг» (датского) и «Рокфеллер* (американского), Бор был волен пригласить кого угодно провести в Институте несколько дней, месяцев или лет.


ЯКОБ КРИСТИАН ЯКОБСЕН И ФОНД «КАРЛСБЕРГ»

Карьера Нильса Бора тесно связана с пивом. У физика не было проблем с алкоголем, просто за его научными проектами всегда стоял фонд «Карлсберг» (одна из старейших в Европе филантропических организаций, поддерживающих науку). Якоб Кристиан Якобсен, владелец крупнейшей пивоваренной компании в Дании, создал этот фонд в 1876 году, и его начальный капитал составил один миллион датских крон, но эта сумма быстро увеличивалась. Тогда было установлено, что значительная часть акций фонда будет направлена на поддержку науки в Дании. Великолепный особняк Якобсена в пригороде Копенгагена передали в дар фонду, и резиденция стала самым влиятельным местом в развитии науки и искусства того времени. Нильс Бор занимал этот особняк с 1932 года до своей смерти в 1962 году. В1995 году здание изменило свою функцию, и сегодня это лекционный центр.


У Института в Копенгагене была еще одна причина стать мировым центром теоретической физики: осенью 1922 года Бор получил Нобелевскую премию. Шведская Академия предпочла отложить вручение премии предыдущего года, и это было на руку Бору. Премию ему присудили одновременно с лауреатом 1921 года Альбертом Эйнштейном (Бор получил награду за работу в области структуры атома, а Эйнштейн — за интерпретацию фотоэлектрического эффекта). Это совпадение стало удачным, поскольку Нобелевская премия тогда еще не была медийным явлением. Кроме того, в первые годы Академия наук не всегда отмечала ценность работы лауреата, а зачастую использовала премию для привлечения внимания к научному потенциалу Швеции. Так как Эйнштейн был на тот момент медийной персоной, вручение Нобелевской премии привлекло внимание журналистов, хотя новость сводилась к тому, что немецкий физик получил крупную премию, без уточнения, что она именно Нобелевская. В любом случае, имя Нильса Бора тогда появилось в международной прессе как удостоившегося той же награды, что и Эйнштейн.

После этого Бору стали оказывать многочисленные почести и вручать премии в самых разных странах. Ему делали соблазнительные предложения возглавить кафедры более значимые, чем институт в маленькой Дании. Из Берлина, едва утихли послевоенные беспокойства, Макс Планк дал ему знать, что немецкая академия наук готова предложить ему хорошо финансируемую кафедру, подобную эйнштейновской, где он будет волен делать все что хочет. Лондонское Королевское общество пообещало Бору кафедру с жалованьем, в три раза превосходившим его жалованье в Копенгагене, не считая существенной суммы на учреждение собственного исследовательского центра в любом уголке Англии. Последнее предложение было самым аппетитным: работать бок о бок с другом и уважаемым учителем Эрнестом Резерфордом, директором Кавендишской лаборатории, было более чем заманчиво. Однако верность своему городу и своей стране победила, и Бор остался в Дании.

Практически с самого начала Институт стал не только центром академической жизни Бора, но также и жизни семейной. Два верхних этажа великолепного здания Нильс и Маргрет превратили в свое жилье и таким образом стерли границы между профессиональным и частным. Там же родились их дети: Кристиан, первенец, в 1916 году, Ханс Хенрик в 1918-м, Эрик в 1920-м, Оге Нильс в 1922-м, Эрнест Давид в 1924-м и младший, Харальд, в 1928 году. Как вспоминал один из сыновей Бора, у них было много «дядей»: дядя Крамере, дядя Клейн и дядя Гейзенберг считались членами семьи.


ПРИНЦИП СООТВЕТСТВИЯ

Нильс Бор и Арнольд Зоммерфельд работали над объяснением атомных спектров на основе квантовой атомной модели. То, что в 1913 году было лишь введением ограничения возможных скачков между различными атомными орбитами (круговыми в изначальной модели), постепенно усложнялось, пока не появились еще два ограничения: одно — для возможного эксцентриситета электронных орбит, и другое — для прецессионного движения этих орбит. Атом Бора — Зоммерфельда, как его называли, давал достаточно удовлетворительные результаты в предсказании спектра относительно простых атомов.

Но многие не согласились с этими новшествами. Главным камнем преткновения стало то, что Бор не мог дать никакого объяснения предложенной им модели. Скачки энергии и форма электронных орбит были ограничены постоянной Планка, но почему? Казалось, что это случайная, созданная лишь для конкретной цели гипотеза, лишенная какого-либо обоснования. Так, венский физик Пауль (1880-1933) заявил в 1913 году, что если физика и дальше будет развиваться подобным образом, то лучше оставить эту дисциплину. После экспериментального успеха модификаций, введенных Зоммерфельдом, Эренфест написал ему: 

«Хотя я все еще считаю ужасным, что эти успехи способствуют утверждению чудовищной модели Бора, желаю вам большой удачи в развитии физики в Мюнхене». 

В числе неудовлетворенных новой моделью был сам Бор. Его представление о физике основывалось на выведении формулировок базовых и основополагающих принципов, которые объясняли бы максимально возможное количество событий.


КЛАССИЧЕСКАЯ ФИЗИКА ИЛИ КВАНТОВАЯ ФИЗИКА?

Эти два термина могут ввести в заблуждение по двум причинам: исторической и научной. Физики XIX — начала XX века никогда не считали себя «классическими». Была только одна физика, которой они занимались, и она продолжала линию, намеченную во времена Ньютона, хотя дисциплина постоянно развивалась. Так, наука об электромагнетизме не имела четкого определения до выхода работ Джеймса Максвелла в 1870-е годы, и после вклад многих физиков заключался в развитии этой области. Это развитие сделало очевидным ее ограничения и внутренние противоречия, что расчистило пространство для появления теории относительности и квантовой физики. Так что ошибочно думать, будто идеально определенную и стабильную «классическую» физику сменила идеально определенная и стабильная квантовая физика. С точки зрения современной науки важно подчеркнуть, что параллельное существование двух физик (классической и квантовой) — это не противоречие, не означает оно также, что первая устарела и, следовательно, должна быть отвергнута. Большинство знакомых нам явлений повседневной жизни может объяснить и предсказать так называемая «классическая» физика. Квантовые явления проявляются только в царстве очень малого и очень высоких энергий, так что знание их не имеет значения в работе большинства ученых и инженеров.

Человек ступил на поверхность Луны в 1969 году без применения квантовых принципов или принципов относительности.


Он не был экспериментатором и не довольствовался объяснением или открытием конкретного явления, ему были нужны принципы, на которых строится наука. А его модель атома не соответствовала этой предпосылке. На самом деле он уже три года ничего не публиковал именно по причине этого недовольства. Ему нужно было лучше понять причину и дать ей математическое и физическое обоснование, которое он в тот момент не мог найти.


Любое описание естественных процессов должно основываться на понятиях, выведенных, в первую очередь, классической физикой.

Нильс Бор


Предложение Бора вылилось в длинную статью, опубликованную в трех частях, первые две — в апреле и октябре 1918 года, третья — через три года. Из рукописи видно, что Бор написал все три части в 1916 году и до публикации внес лишь незначительные изменения. Но ему требовалось обдумать и проверить правильность своего предложения, убедиться в том, что он написал именно то, что хотел сказать. Это был обычный образ действий Бора, его тщательность иногда приводила в отчаяние ближайших коллег и сбивала с толку остальных ученых. Кроме того, война и последовавшие за ней годы были не лучшим моментом для открытых дебатов об основах самой физики.

Главный вопрос, которым задавался Бор тогда, заключался в том, как на основе постулатов традиционной физики вывести квантовые правила, управляющие структурой атома. Мы делаем акцент на слове «вывести», поскольку в этом была суть его подхода. Проблема не только в толковании экспериментальных фактов, но и в том, как найти эти толкования на основе классической физики, которая со времен Ньютона была справедливой на тот момент для всех явлений, изучаемых физикой.

Его решением задачи стало то, что назвали «принципом соответствия», которым в начале 1920-х руководствовалась зарождающаяся квантовая физика. Основной момент этого принципа — непрерывная связь классического и квантового миров.

Эта непрерывность проявлялась в двух направлениях. Прежде всего, любая специфическая теория, справедливая для описания излучения на субатомных уровнях, должна быть такой, чтобы при применении больших квантовых чисел имелась возможность получения того же самого результата, что и с помощью классической физики. То есть принцип соответствия предполагал, что отправной точкой для формулировки моделей, предсказывающих субатомное излучение, должны быть законы классической физики и что только после формулировки модели к ней можно добавить условие квантизации.

«Квантизировать» — значит поставить условие, что классические величины, такие как энергия или угловой момент, должны быть кратны постоянной Планка. Именно это сделал Бор в своей модели атома 1913 года с взаимообменом энергии при переходе электронов с одной орбиты на другую; эту формулировку Зоммерфельд расширил до эксцентриситета таких орбит и углового момента их прецессии. Чтобы не повторять все три случая, посмотрим, как принцип соответствия применяется к случайной классической проблеме гармонического осциллятора.

Представим себе классический гармонический осциллятор; например, колеблющуюся пружину. Энергия этой пружины зависит от ее амплитуды (A), массы (m) и угловой частоты колебания (ω) следующим образом:

E = mω2A2/2.

Для квантового осциллятора, напротив, тот же самый процесс, описываемый этим уравнением (после введения условия квантизации, то есть постоянной Планка), имеет форму

E = (n + 1/2)ħω,

где n — квантовое число (0, 1, 2, 3); ħ — кратное постоянной Планка, известное как «редуцированная постоянная Планка» (а именно ħ = h/2π), а ω — угловая частота колебания.

Принцип соответствия требует, чтобы для больших квантовых чисел результат квантового выражения совпадал с результатом, предоставляемым классической физикой. Если сравнить оба выражения, можно увидеть, что для n порядка 1033 оба выражения совпадают. Для большей ясности рассмотрим следующий пример: у пружины массой 1 кг при угловой частоте 1 рад/с и амплитуде 1 м энергетическая разница между двумя последовательными уровнями энергии будет порядка 10-34 Дж, то есть абсолютно ничтожной на макроскопическом уровне.

В этом месте возникает сомнение. Действительно ли принцип соответствия — тот принцип, который искал Бор? Он больше похож на очень элегантный способ утвердить специально введенный элемент (постоянную Планка) в классических моделях. И действительно, так оно и есть. Хотя принцип соответствия использовался и продолжает использоваться для вычисления спектров излучений различных квантовых явлений, его научно-философский статус проблематичен, поскольку он не выводит постоянную Планка, а навязывает. С определенными оговорками эта постоянная навязана классической модели извне.


КРИЗИС ПЕРВОЙ КВАНТОВОЙ ФИЗИКИ

В книгах по истории квантовой физики обычно говорится о двух периодах: различают «старую» и «новую» квантовую физику. Принцип соответствия принадлежит первой из них, главная характеристика которой — постоянная попытка поддерживать тесную связь между квантовым миром и классическим. Одной из этих связей была возможность вообразить модели для представления физических данных. Вспомним: большой прорыв Бора, сформулировавшего атомную модель, состоял в отказе от мысли о том, что излучение электронов — результат их движения по определенной орбите (как этого требовала классическая электродинамика), и предположении, что испускаемая энергия есть итог перехода с одной орбиты на другую. Однако в обоих случаях оставались два центральных понятия: «орбита» и «модель атома».

В этом заключалась отсылка к традициям классической физики. «Объяснить» — означало представить модель, из которой были бы ясны наблюдаемые явления. Предшественники Бора полагали, что хотя информация об атоме получена косвенным путем (например, через спектральные линии), цель науки — узнать атом изнутри, иметь в распоряжении миниатюрную модель атома, как бы его фотографию. Квантовая прерывность (тот факт, что в мире бесконечно малого взаимообмен энергией является дискретным) была первым сигналом невозможности представить себе мир бесконечно малого в виде простой миниатюры в масштабе, доступном для человека. Такой ход мысли работал в XVII веке при использовании первых микроскопов и даже был важным рабочим инструментом в развитии статистической механики. В квантовом мире эта непрерывность не действовала, хотя в 1923 году Бор только начинал это осознавать.

Действительно, после успеха, который имела атомная модель Бора — Зоммерфельда, ее применение каждый раз ко все большему числу конкретных случаев и экспериментальное развитие спектроскопии до невообразимых деталей постепенно привели к накоплению аномалий и необъяснимых явлений, и вот ситуация уже не терпела отлагательств. Многие ученые ощутили разлад в физике, и начался поиск путей пересмотра ее основ.

Две самые устойчивые аномалии были характерны для атома гелия и его структуры, тогда это назвали «аномальным эффектом Зеемана». Когда Дмитрий Менделеев создал свою периодическую таблицу элементов, не было никаких достоверных сведений о существовании благородных газов («благородные» — потому что обычно не реагируют с другими элементами). Только в начале XX века с открытием гелия и аргона возникла необходимость добавить новый столбец, группу О, в которой содержались бы эти два газа. К ним вскоре добавились криптон, неон и ксенон. Так гелий стал вторым элементом таблицы (после водорода), а его ядро — это частицы, составляющие а-излучение.

Главная проблема заключалась в том, что Бор и Ханс Крамере (1894-1952), его молодой ассистент с 1916 года, не могли сопоставить экспериментальные данные спектра гелия ни с какой моделью атома. То, что сработало с атомом водорода, у которого был только один электрон, вращающийся по орбите вокруг ядра, не было справедливо для гелия, обладающего двумя электронами. Среди основных структурных сложностей был факт, что орбиты двух электронов не могли быть копланарнымн (лежать в одной плоскости). Если рассматривать модель Солнечной системы с девятью планетами, поражает, что все они вращаются вокруг Солнца в одной и той же плоскости. Так же в одной и той же плоскости вращались вокруг ядра все возможные орбиты электрона водорода во всех его возмущенных состояниях. В этом случае три квантовых числа, введенные в модели Бора — Зоммерфельда, соответствовали копланарным орбитам. Однако для гелия никак не удавалось создать копланарную модель, которая предсказывала бы лучи спектра, что ставило под сомнение справедливость принципа соответствия.


ТЕОРИЯ БКС И СТОЙКОСТЬ СОХРАНЕНИЯ ЭНЕРГИИ

Отчаяние Бора в 1923 и 1924 годах было таким сильным, что он был готов на все, лишь бы вывести теорию с предсказательной силой для объяснения всех экспериментальных результатов, которые постепенно накапливались: не только структуру атома, но также взаимодействие излучения с материей. Самая известная попытка — теория БКС; аббревиатура образована фамилиями ученых, ее сформулировавших: Бор, Крамере и недавно приехавший из США молодой Джон Слейтер (1900-1976). Среди самых безрассудных предложений оказался отказ от принципа сохранения энергии. Раз уж нужно было менять основания физики, почему бы не предположить, что энергия не сохраняется? В 1919 году Чарльз Дарвин в письме уже предлагал это, и в 1924 году Бор, казалось, был готов отнестись к идее всерьез. Теория БКС просуществовала недолго. На самом деле она так и не была полноценно разработана, поскольку вскоре столкнулась с экспериментальной непоследовательностью и была опровергнута. Однако возможность отказаться от принципа сохранения энергии снова представилась в конце десятилетия в связи с одной из проблем радиоактивности. Но и здесь принцип так же был спасен от смерти. Несмотря на многочисленные изменения, произошедшие в физике в XX веке, принцип сохранения энергии, впервые сформулированный Джеймсом Прескоттом Джоулем (1818-1889) в середине XIX века, оказался одним из немногих выживших в этих трансформациях. Возможно, именно благодаря гибкости он выдержал даже расширение понятия энергии. Так, если первая формулировка принципа сохранения связывала движение с теплом (кинетическую энергию и тепловую энергию), то со временем добавились другие формы энергии: потенциальная, электрическая, магнитная... пока Эйнштейн не сформулировал свое знаменитое уравнение Е = mc2, после чего сама масса стала формой энергии.

Джеймс Прескотт Джоуль.


Вторая проблема — аномального эффекта Зеемана — также не касалась атома водорода, но имела отношение к остальным атомам. В конце XIX века голландский физик Питер Зееман (1865-1943) заметил, что все спектральные линии делятся на две или даже три, когда атомы подвергаются воздействию магнитного поля. Зееман и его учитель, Хендрик Антон Лоренц (1853-1928), получили Нобелевскую премию 1902 года за это открытие, а также за его интерпретацию, которая вскоре была признана ошибочной. Согласно Лоренцу и Зееману, свет, соответствующий линии спектра, может отклоняться по-разному в зависимости от того, является ли магнитное поле параллельным или перпендикулярным по отношению к испускаемому свету, что порождает до двух новых спектральных линий рядом с исходной. Проблема заключалась в том, что затем были зафиксированы случаи, когда под влиянием магнитного поля спектральные линии делились более чем на три линии. Это был аномальный эффект Зеемана, которому так же не было места в схеме Бора — Зоммерфельда. Посмотрим, как удалось выбраться из этого лабиринта.


НОВОЕ ПОКОЛЕНИЕ В ОКРУЖЕНИИ БОРА

Наряду с предложениями возглавить кафедры других университетов Бор также постоянно получал приглашения читать лекции или краткие курсы во многих европейских учреждениях. Его живой и воодушевляющий стиль привлекал молодых исследователей, искавших собеседников, которые объяснили бы им суть зарождавшейся квантовой физики, на что предыдущее поколение профессоров не всегда было способно. Бор поддерживал диалог с начинающими учеными в поисках новых идей и возможных талантов. Так подобрался целый ряд подающих надежды молодых людей, которых он приглашал в Копенгаген. Многие из них стали главными действующими лицами в физике 1920-х годов.

Вольфганг Паули (1900-1958) был одним из первых (и одним из самых молодых) людей, кто воспользовался гостеприимством Бора. Паули, родившийся в Вене, решил изучать физику в Мюнхенском университете, где Зоммерфельд сразу же признал его талант. Действительно, всего лишь через три года после начала обучения Паули получил степень доктора за свои работы по теории относительности, обратившие на себя внимание самого Эйнштейна. Его первая исследовательская должность была в Гёттингене, где отделением теоретической физики руководил Макс Борн (1882-1970), там же он присутствовал на семинаре, который проводил Бор. Через несколько лет Паули вспоминал: «Когда я лично познакомился с Бором, начался новый этап моей научной жизни». Ему было всего 22 года, когда знаменитый датчанин, увидев, что один из его интересов составляет проблема эффекта Зеемана, пригласил молодого человека провести год в Копенгагене.

Другим молодым ученым, которого принимал Бор, был Вернер Гейзенберг (1901-1976). В возрасте 23 лет он уже опубликовал дюжину статей об атоме Бора в связи с гелием и эффектом Зеемана и занимал должность преподавателя (приват-доцента) в Геттингене. Некоторые из этих статей были плодами его сотрудничества с Зоммерфельдом в Мюнхене и с Борном в Гёттингене. Бор и Гейзенберг очень интенсивно общались, прекрасно понимая и дополняя друг друга. Гейзенберг в итоге провел много времени в Копенгагене, как он вспоминал годы спустя, ото было единственное место, где можно было насытиться духом квантовой физики».

Арнольд Зоммерфельд и Нильс Бор, 1919 год.

Ученый с пятью сыновьями. Рядом с ним — Оге, лауреат Нобелевской премии по физике 1975 года.


Это чрезвычайно точное определение, ведь после первого пребывания в столице Дании Паули и Гейзенберг изобрели квантовую механику, абсолютно новый способ понимания атомных явлений. Ключевой поворот, который совершили исследователи и увлекли за собой всех физиков, состоял в том, чтобы перестать думать об электронных орбитах и отказаться от принципа соответствия Бора, вынуждавшего представлять структуру атома, к которой до той поры не применялись квантовые ограничения. Новая квантовая механика делала шаг, на который не решился Бор. Требовалось полностью отказаться от любой попытки визуализировать атомные орбиты и сосредоточиться только на наблюдаемых свойствах электронов. Наблюдаемыми были свойства, полученные благодаря атомным спектрам и увеличивающимся объемам информации, которую давала радиоактивность и другие виды излучения.

Паули отказался от назначения квантовых чисел переходам между возможными электронными орбитами и переключился на присвоение каждому атомному электрону метки (сочетания трех квантовых чисел, которые использовали Бор и Зоммерфельд), установив, что в каждом атоме не может быть двух электронов с одной и той же меткой. Так, если в модели Бора — Зоммерфельда три квантовых числа относились к переходу энергии, эксцентриситету и прецессии возможных орбит вокруг ядра, то для Паули эти три квантовых числа были только величинами, которые применяются к каждому электрону. Понятие орбиты исчезло, но теоретические прогнозы совпадали с экспериментальными результатами.


ПРИНЦИП ЗАПРЕТА ПАУЛИ И ОРГАНИЗАЦИЯ ЭЛЕКТРОНОВ ПО ОРБИТАЛЯМ

Представим себе атом с большим числом электронов. Как они распределяются вокруг ядра? Если отказаться от понятия орбиты, траектории электронов нарисовать уже нельзя, но, следуя постулатам новой квантовой механики, можно назначить им квантовые числа. Числа, косвенно отражающие уровни энергии. Любая физическая система стремится к состоянию наименьшей энергии. Если бы это было так, все электроны в стабильном атоме стремились бы к одному и тому же уровню, самому низкому. Принцип Паули запрещает именно это: не может быть двух электронов с одинаковыми квантовыми числами. Так электроны постепенно заполнят различные уровни (орбитали), начиная с самой низкой энергии. По этому правилу, орбитальная структура следует порядку стрелок на прилагаемом рисунке. Целые числа 1, 2, 3... представляют первое квантовое число, которое Бор ввел в 1913 году. Буквы s, р, d, f... представляют, в свою очередь, два квантовых числа, которые ввел Зоммерфельд: s изначально соответствовало круговой орбите; р — трем орбитам с одним и тем же эксцентриситетом, но с различными прецессиями; d — пяти орбитам, f— семи. Наконец, благодаря спиновому квантовому числу на каждой из этих орбиталей может быть по два электрона, один с положительным спином, а другой с отрицательным. Например, в случае с атомом меди, содержащим 29 электронов, его электронная конфигурация будет следующей:

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d9.

Если сложить верхние индексы, мы увидим, что общее число электронов в сумме дает 29.


Единственная проблема, с которой столкнулся Паули, состояла в необходимости введения четвертого квантового числа, которое полностью объясняло эффект Зеемана, как нормальный, так и аномальный. Паули никак не истолковал это число, но двое молодых исследователей из Лейдена, Джордж Уленбек (1900-1988) и Сэмюэл Гаудсмит (1902-1978), решили, что это четвертое квантовое число можно считать четвертой степенью свободы электрона, чем-то вроде внутреннего вращения, аналогичного вращательному движению планет вокруг своей оси. По данной причине это четвертое атомное число было названо спином (от английского spin — «вращаться»).

Все вышесказанное подводит нас к принципу запрета Паули: в одной и той же системе, в одном и том же атоме каждый электрон должен отличаться от всех остальных; его четыре квантовых числа не могут совпадать. Это объясняет, например, что в самом низком состоянии энергии любого атома все электроны не могут находиться на первом орбитальном уровне, они распределяются по возрастающим уровням энергии и квантовым числам.

Гейзенберг развил этот новый ход мысли до конца. Речь не только о том, чтобы забыть об орбитах электронов в атомах, но и о том, чтобы перестать думать о траекториях в целом и даже о классическом понятии частицы как чего-то ограниченного в пространстве. Значительная часть новой механики была сформулирована Гейзенбергом во время отпуска на Гельголанде, маленьком острове в Северном море. Его формулировка в итоге стала одним из предложений, изменивших физику.

Гейзенберг, освободившийся от неуверенности в себе, характеризовавшей его в молодые годы, сказал, что квантовая физика слишком осложнена моделями, которые не имеют под собой никакого основания и уже не справляются с предсказанием эмпирических результатов. Вместо того чтобы брать за отправную точку модели, нам незнакомые, лучше взять действительно известные данные: число и интенсивность спектральных линий, рассеяние излучений и света или любое другое явление, связанное с электронами и излучениями. И Гейзенберг, будто нумеролог или каббалист, принялся организовывать данные энергии и интенсивности по рядам и столбцам. Так он заметил, что складываются любопытные повторяющиеся математические отношения, которые позволяют ему с относительной легкостью оперировать эмпирическими данными.


БЛЕСТЯЩИЕ И НЕЗАКОМПЛЕКСОВАННЫЕ ЮНОШИ

Историки науки много раз задавались вопросом, как возможно, чтобы поколение молодых ученых, происходивших в основном из Германии и Австрии, сумело изменить облик физики за такой короткий срок. Необходимость объяснить абсолютно новые явления, возникшая после открытия рентгеновских лучей, радиоактивности и электрона,— недостаточный аргумент. В странах, проигравших Первую мировую войну, было очень неспокойно. Гиперинфляция в Германии и, в меньшей степени, в Австрии, наряду с постоянными революционными движениями со всех сторон политического спектра, определили атмосферу неуверенности, где понятие «вероятности» накладывалось на понятие «причинной обусловленности». Молодые ученые видели необходимость разрыва со старой традицией, которая привела их страны к катастрофе. Есть и еще один аспект. В обстановке кризиса и неуверенности, если кто-то хотел получить должность в университете, нужно было уметь привлечь к себе внимание. Так социально-экономическая обстановка определила рискованный ход мысли для молодежи, озабоченной своим профессиональным будущим. Естественно, мы говорим только о тех революционных идеях, которые работали, иначе можно было бы вспомнить множество теорий, отошедших в мир иной; имена их создателей так и не попали в историю науки. Несомненно одно: в более стабильной, более традиционной ситуации идеи таких людей, как Гейзенберг и Паули, принять было бы сложнее.

Вернер Гейзенберг.


Первым, с кем он обменялся идеями, был Паули, и только на исходе лета взволнованный Бор увидел, что спустя десять лет его радикальная идея уже устарела, а молодые ученые вроде Гейзенберга и Паули меняют облик физики. По достоинству оценил проделанную Гейзенбергом работу его старый учитель и коллега по Геттингену Макс Борн, в большей степени математик, чем физик. Он увидел, что числовые отношения, найденные Гейзенбергом, совпадают с алгеброй Давида Гильберта (1862-1943), выведенной за несколько лет до этого также в Гёттингене. То есть идеальная конструкция (гильбертовы пространства), сформулированная для развития чистой математики, нашла практическое применение в объяснении физики самого малого и невообразимого.

Как толковал свою новую теорию сам Гейзенберг? Что означало забыть об орбитах и траекториях и сосредоточиться на наблюдаемых энергиях и амплитудах? Сотрудничество Бора и Гейзенберга достигло одной из кульминационных точек, которой стало появление так называемого «принципа неопределенности Гейзенберга». Он утверждает, что невозможно измерить одновременно и точно скорость и положение определенной частицы (то же самое справедливо для любой пары «сопряженных» величин, таких как энергия и время). Невозможность эта не просто техническая: она свойственна самому процессу измерения в атомном масштабе, поскольку само измерение предполагает значительное воздействие на измеряемое.

На макроскопическом уровне этого не происходит. Представим себе, как мы наблюдаем за тем, что находится внутри абсолютно темной комнаты. Мы можем взять фонарик, и если мы будем осторожными, наше наблюдение не окажет воздействия на содержимое комнаты. Но если мы захотим измерить содержимое атома, для его «освещения» будет использован поток света, энергия которого — того же порядка, что и у электронов внутри, поэтому мы получим информацию о результате взаимодействия света с электронами, а не о том, какими были электроны до облучения. Выходит, что на внутриатомном уровне измерение — это процесс, который изменяет саму систему и, следовательно, предоставляет информацию не о том, какой была эта система до наблюдения, а о том, какой она стала после.

Итак, принцип неопределенности — это отход от самого понятия траектории и местоположения. Другими словами, Гейзенберг, Бор и Паули считали, что физика должна сосредоточиться на начальных и конечных условиях изучаемых событий, а не на процессе, который они преодолевают, поскольку вмешаться в сам процесс означает изменить его. Это то же самое, что исследовать поведение воды в состоянии покоя в бассейне, погрузившись в нее. Изучаемое состояние будет полностью изменено, и любые полученные данные будут соответствовать не стоячей воде, а совокупности вода-пловец.


ЧАСТИЦЫ И ВОЛНЫ

Наряду с головоломкой о внутренней структуре атома физика начала XX века столкнулась с другой загадкой — с природой таких излучений, как свет, рентгеновские лучи и радиоактивность. Что такое свет? Что это за «объект*'? Вопрос завораживал натурфилософов эпохи Возрождения и Барокко, включая Галилея, Декарта и Ньютона, но они не пришли к окончательному соглашению. Из-за авторитета Ньютона в XVIII веке многие точно следовали его идеям и считали очевидным, что свет состоит из потока световых частиц. Хотя также были свидетельства, позволявшие предположить, что свет ведет себя как волна. В XIX веке тенденция изменилась, и особенно после работ Максвелла, подтвержденных в 1888 году Генрихом Герцем (1857-1894), уже никто не сомневался, что свет — это волна и что Ньютон ошибался.

Однако этот консенсус длился недолго. Рентгеновские лучи и у-излучение имели некоторые общие свойства с электромагнитным светом, но в других аспектах вели себя как частицы. Также в одной из своих статей 1905 года Эйнштейн предположил, что свет подчиняется постулату Планка и, следовательно, должен пониматься как совокупность «квантов света», частиц, которые позже назвали «фотонами». Ученые вновь оказались на распутье.

Известны два знаменитых комментария, демонстрирующих замешательство в среде физиков накануне Первой мировой войны и в первые послевоенные годы. Так, на лекции 1921 года Уильям Генри Брэгг (1862-1942) сокрушался, что физики находятся в полнейшей темноте: 

«Должно быть, есть какой-то факт, абсолютно неизвестный нам, который, когда он будет открыт, произведет революцию в нашем представлении о связи между волнами, эфиром и материей. На данный момент мы вынуждены оперировать обеими теориями. По понедельникам, средам и пятницам мы пользуемся волновой теорией, а по вторникам, четвергам и субботам интерпретируем свет как потоки частиц». 

Джозеф Джон Томсон, в свою очередь, пошутил, что волновая и корпускулярная теории похожи на «битву между тигром и акулой. Каждый из этих зверей самый сильный в своих владениях, но бесполезен на территории другого».

Конфликт двух теорий был разрешен в результате его расширения. В 1924 году молодой французский аристократ Луи де Бройль (1892-1987) защитил докторскую диссертацию, в которой применил теорию относительности к движению электронов. Движению последних, а следовательно и каждой частице, назначалась волна, то есть был сделан вывод, что иногда они ведут себя как волна. Сам Эйнштейн пришел в восторг от этой диссертации.

Следуя концепции Луи де Бройля, молодой преподаватель Цюрихского университета Эрвин Шрёдингер (1887-1961) развил настоящую механическую теорию электронов с помощью математики, характерной для изучения волн. Так Шрёдингер смог предсказать возможные квантовые состояния электронов в атоме. Гейзенберг сделал то же самое, но различие заключалось в способе. Если назначить каждому электрону волновую функцию, то волны могут взаимодействовать — как, например, две морские волны. Самое удивительное было в том, как Шрёдингер вводил квантовые числа в каждую волну, то есть в поведение электронов, поскольку он делал это на основе узлов гармонического колебания волн.

Представим себе струну, закрепленную с двух сторон. Она может колебаться различными стабильными способами, называемыми гармониками, как показано на рисунке 1. Самая простая основная гармоника — имеющая в качестве единственных неподвижных точек концы струны. Вторая гармоника — та, в которой есть еще одна неподвижная неколеблющаяся точка в середине струны. В третьей гармонике их две, и так далее.

Гениальность Шрёдингера состояла в том, что он связал узлы колебания со спектральными линиями атома водорода. Другими словами, узлы гармонических колебаний волновой функции, назначенной электрону, определялись как квантовые числа, которые Бор и Зоммерфельд ввели в свою модель атома. В формулировке Шрёдингера поведение электронов задано узлами назначенной им волновой функции; квантовые числа оказывались естественным образом связанными с этими узлами.

РИС. 1


ПРИНЦИП ДОПОЛНИТЕЛЬНОСТИ

С 1925 по 1926 год успех Института теоретической физики в Копенгагене был таким, что Бору пришлось расширить помещение. Здание, полное каменщиков, рабочих и небольшой армии ученых, — неплохая метафора происходящего в то время, ведь тогда изменялся сам фундамент физики. Однако, как это часто происходит с любым архитектурным проектом, планы не всегда совпадали. Точно так же не совпадали проекты, разработанные Гейзенбергом, Паули, Борном и Бором, с проектами Шрёдингера и де Бройля. Нужно было либо отказаться от одного из них, либо интерпретировать их так, чтобы совместить.

Бор убедил своего излюбленного собеседника Гейзенберга принять предложение преподавать в Копенгагене в течение года, чтобы иметь возможность продолжать закладку фундамента квантовой механики. Именно это и происходило в течение 1926-1927 учебного года. Частично реконструкция Института теоретической физики состояла в полной переделке жилой части здания, чтобы разместить гостивших ученых. Семья Боров, в свою очередь, перебралась в особняк по соседству. Гейзенбергу было поручено подготовить жилье к принятию приглашенных ученых, и тот смог оценивать преимущества работы рядом с Бором денно и нощно. Позже Гейзенберг вспоминал: 

«Иногда Бор заходил в мою комнату в 8 или в 9 утра и спрашивал: «Что ты думаешь об этом?», затем он сразу же продолжал говорить и говорить, отвечая на вопрос, который сам же задал. И так до полуночи». 

Одним из основных вопросов, которые беспокоили обоих физиков, было, конечно же, наличие двух теорий. Полностью различные по принципам, они были одинаково полезными. Это стало ясно, когда вскоре по прибытии в Копенгаген Гейзенберг решил проблему спектра гелия, применив методы Шрёдингера, а также принцип запрета и понятие спина. Настало время пригласить Шрёдингера, с которым Бор еще не был знаком лично, провести несколько дней в Копенгагене.

Этот визит, который состоялся в конце лета 1926 года, запомнился всем. Бор отправился встречать Шрёдингера на вокзал и без всяких экивоков сразу же обрушил на гостя шквал вопросов, критики, реплик и ответных реплик. Шрёдингер, представитель буржуазной культуры, был ошеломлен этим недипломатичным приемом, особенно если учитывать, что ему предстояло остановиться в доме Боров. Шрёдингер не знал, что по замыслу неутомимого Бора его приглашение было не столько проявлением вежливости, сколько поиском выгоды. Так датчанин мог спорить с ним и с Гейзенбергом день и ночь, пока через несколько дней Шрёдингер не заболел. Маргрет ухаживала за ним, но не могла помешать мужу сидеть у изголовья выздоравливающего и продолжать их особенную беседу.

Больше всего Бора заботило не то, что обе квантовые формулировки работали, а то, что метод Шрёдингера слишком походил на его собственные попытки, начатые им в 1913 году и спустя десять лет так и оставшиеся безрезультатными, на попытки установить непрерывность между классической и квантовой физикой. Гейзенбергу потребовалась абсолютно новая математика (гильбертовы пространства), а Шрёдингер, по крайней мере так казалось, продолжал пользоваться старой математикой волновых явлений. Что-то здесь было не так.

Эта встреча напомнила Бору о дискуссиях, которые вел его отец со своими друзьями, когда способ выражения не должен мешать высказывать все сомнения. Поэтому было важно лучше понять ценность, значение и ограничения теорий Гейзенберга и Шрёдингера. Все это содержится в принципе дополнительности, который Бор разработал в последующие месяцы и представил на Съезде в Комо в сентябре 1927 года.

Принцип дополнительности находился на полпути между физикой и философией, что больше всего нравилось Бору. По его воспоминаниям, все сложилось во время каникул весной 1927 года, когда он катался на лыжах в Норвегии. Летом он записал эти идеи, точнее продиктовал их своим ассистентам и выбившейся из сил супруге. Каждый день версия менялась, поскольку он хотел быть точным, очень точным, чтобы его концепция был предельно понятной.


МУССОЛИНИ И ФИЗИКА

В сентябре 1927 года итальянские власти организовали международный съезд физиков, который прошел на берегу озера Комо. Событие приурочили к 100-летию со дня смерти Алессандро Вольты (1745-1827), великого итальянского физика, а также к десятой годовщине прихода к власти Муссолини. Съезд был одной из попыток правительства дуче на свой лад укрепить международный престиж Италии. Немецкие ученые задавались вопросом, предполагает ли участие в мероприятии формальную поддержку режима, который, среди прочего, ущемлял немецкоязычное меньшинство в Италии. Однако комитет Съезда утверждал, что находится вне политики, кроме того, он обладал авторитетом, не связанным с режимом Муссолини. Таким образом, почти все приглашенные согласились приехать, и это был первый международный съезд физиков после Первой мировой войны. Самым примечательным оказалось отсутствие на нем Альберта Эйнштейна.


Бор пришел к выводу, что нет никаких проблем в параллельном существовании двух формулировок — матричной Гейзенберга и волновой Шрёдингера. Обе полностью справедливы, но каждая — в своей области. Отношения неопределенности Гейзенберга показали, что невозможно вывести идеальное описание физической системы, поскольку процесс измерения становится частью наблюдаемой системы и, следовательно, изменяет ее. Принцип дополнительности ввел в физику фундаментальную относительность, параллельную относительность Эйнштейна. Дополнительность означала, что любое физическое описание является относительным применительно к используемой экспериментальной системе. Если измерять волны, нельзя одновременно измерить частицы, и наоборот. Оба метода полностью корректны, но только если мы учитываем, что и как мы измеряем.

Кроме того, как матричная (сосредоточенная на интерпретации явлений в терминах частиц), так и волновая механика полностью корректны, но только в качестве источников вероятностей. Ни один из двух методов не дает прогнозов, что именно произойдет. Они предоставляют только вероятностные прогнозы, что, кстати, было имплицитно заложено в самом понятии корпускулярно-волнового дуализма де Бройля, так же как и в принципе неопределенности Гейзенберга. Бор понял: единственное, что может дать квантовая механика,— это вероятностные прогнозы, справедливые в отношении экспериментальной системы.

Одному ученому, который не присутствовал на Съезде в Комо по политическим мотивам, не понравился вероятностный уклон, по которому пошел Бор. Этим ученым был Альберт Эйнштейн.


ГЛАВА 4 Битва титанов: дебаты Эйнштейн — Бор

В 1930-е годы атом постепенно заселяли новые обитатели. То, что до тех пор было очень простой моделью (ядро и несколько электронов вокруг), усложнилось с открытием других элементарных частиц — нейтрона, позитрона, нейтрино и мезонов. Бору и его современникам предстояло испытать квантовую механику внутри атомного ядра, где находятся эти частицы. Однако точки зрения двух великих физиков того времени — Эйнштейна и Бора — абсолютно расходились.

«Бог не играет в кости» — этой знаменитой фразой Эйнштейн отреагировал на интерпретацию квантовой механики, предложенной в Копенгагене, особенно после того как в 1927 году Бор наделил вероятностным характером новую физику. Это не противопоставление теологического (Эйнштейн) аргумента математическому (Бор), а столкновение двух противоположных философских концепций.

Эйнштейн и Бор впервые встретились через месяц после Съезда в Комо, когда пятый Сольвеевский конгресс собрал примерно 30 физиков в Брюсселе. В столицу Бельгии прибыли величайшие ученые эпохи, большинство из них уже имели Нобелевскую премию или удостоились ее позже. Сольвеевские конгрессы — это неформальные дискуссии и обмен идеями без ограничений по времени, свойственных другим встречам. Отсюда — фиксированное число приглашенных, их интернациональность и размещение в общем для всех участников месте, роскошном отеле «Метрополь» в центре Брюсселя.

Эйнштейн спускался к завтраку с примером или мысленным экспериментом, чтобы доказать Бору неверность его интерпретации, неверность принципа дополнительности. Нередко Бор тратил много времени, прежде чем отреагировать и найти ответную реплику на поставленную проблему. Однако день всегда заканчивался победой Бора над Эйнштейном, который тем не менее не сдавался и продолжал доказывать ошибку Бора и его последователей.

Каковы аргументы Эйнштейна? Для начала надо отметить, что примерно с 1925 года основной интерес немецкого физика сосредоточился на объединении его теории гравитации (общей теории относительности) с электромагнетизмом, что было никак не связано с проблемами квантовой физики. В то же время некоторые его квантовые разработки, осуществленные с 1924 по 1925 год, подтверждали один из его прогнозов 1905 года, который дольше всего не принимали в научном сообществе. Речь шла о существовании квантов света, или фотонов, которые подтверждали корпускулярную природу света. Эксперименты Артура Комптона (1892-1962) в США, принцип де Бройля и в какой-то степени сам принцип дополнительности свидетельствовали о существовании фотонов.

Согласно Эйнштейну, глубинная ошибка заключалась в том, что копенгагенская интерпретация была в основном вероятностной и неопределенной: то, что квантовый мир открыт и предлагает различные выходы из одной и той же ситуации, принималось как должное. Если отказаться от понятия траектории и сосредоточиться только на начальных условиях заданной системы и возможных конечных состояниях, квантовая физика перестанет быть детерминированной и давать единственное решение проблем.

Надо понимать вопрос вероятности во всей его радикальности, чтобы уяснить неприятие Эйнштейна. Например, метеорологический прогноз всегда вероятностный: никогда точно не известно, какая именно будет погода. Это связано с нашим незнанием, поскольку нет способа вычислить все переменные, влияющие на погоду. Но неопределенность не является ее главным свойством, это всего лишь результат нашего незнания и неспособности к вычислениям. В квантовой механике неопределенность, напротив, свойственна относящимся к ней проблемам, поскольку изучаемая система варьируется в зависимости от того, как она изучается. Показателен пример с фонариком и потоком света (см. предыдущую главу): чтобы измерить, надо участвовать в процессе, и при этом изменяется то, что измеряется.


СОЛЬВЕЕВСКИЕ КОНГРЕССЫ

Бельгия сыграла очень важную роль в развитии физики первой трети XX века. Здесь проходили научные конгрессы, имевшие наибольшее значение для развития атомной и ядерной физики, теории относительности и квантовой механики. Их инициатором был Эрнест Сольве (1838-1922), химик, прославившийся тем, что разработал и запатентовал процесс производства карбоната натрия — материала, используемого среди прочего в изготовлении стекла и мыла. Первый Сольвеевский конгресс состоялся в Брюсселе осенью 1911 года. В нем участвовали более 20 ученых со всей Европы, приехавших обсудить и детально проанализировать новшества в физике. Намерением организатора, Хендрика Антона Лоренца, было создание благоприятной атмосферы, в которой лучшие ученые своего времени могли обмениваться идеями и мнениями о зарождающейся квантовой физике. Пятый Сольвеевский конгресс, проведенный в октябре 1927 года, возможно, был самым важным. Там победила копенгагенская интерпретация квантовой механики, которую Нильс Бор предложил месяцем ранее в Италии. На фото: физики — участники этого конгресса (Бор — первый справа во втором ряду).


Другой способ понять неопределенность, характерную для квантовой механики, — сосредоточиться на корпускулярноволновом дуализме. Согласно принципу дополнительности, электроны могут быть изучены как волны или как корпускулы, и обе интерпретации являются дополнительными, но несовместимыми. Это означает, что если думать об электроне как о корпускуле и как о волне, образы в результате будут полностью различными, хотя должны быть сопоставимыми.

РИС.1


Рассмотрим пример, в котором электрону предстоит пересечь решетчатую поверхность с двумя отверстиями, как показано на рисунке 1. Если мы представим его как корпускулу, электрон сможет пройти только через одно из отверстий, и его конечный пункт будет единственным; если же мы представим себе его как волну, он сможет пройти сквозь всю решетку, породив волновое явление дифракции. Это означает, что волна электрона становится видимой на экране, согласно моделям дифракции.

Для Эйнштейна оба решения были несовместимыми. Но Бор показывал ему, что это не так, поскольку отверстия в решетке и экран — это часть эксперимента, и нельзя рассуждать о поведении электронов без учета этих элементов. Так, если смотреть только на экран, не заставляя электрон проходить через конкретное отверстие, то электрон проходит через оба.

Если считать электрон корпускулой, единственное, что можно вычислить,— это вероятность того, через какое из двух отверстий он пройдет. Если заставить электрон пройти через одно из отверстий, например закрыв второе, дифракция исчезает, но при этом мы воздействуем на электрон до того, как он сможет решить, через какое отверстие ему проходить.


Истина и ясность дополняют друг друга.

Нильс Бор


Так возникает неопределенность, поскольку нельзя заранее определить, через какое из двух отверстий пройдет заданный электрон; можно только вычислить вероятность на основе начальных условий и проверить в конце эксперимента, через какое из них он прошел. Отсюда выражение «Бог не играет в кости». Для Эйнштейна факт, что миру свойственна неопределенность, что нельзя точно предсказать будущее, был ограничением, которое нельзя принять априори, поскольку это могло бы означать, что в мире нет причинности и явления происходят без ясной на то причины.

Таким образом, дебаты между Бором и Эйнштейном становились все более философскими — не потому, что они противостояли науке (или, что хуже, были антинаучными), а именно потому, что ученые спорили, что такое наука и чем она должна быть. Ключевым понятием для Бора было «явление», в то время как для Эйнштейна — «объективная реальность». Позже Бор, верный своему стремлению четко определять используемые термины, уточнил идею «явления», связав ее «исключительно с наблюдениями, полученными при специфических обстоятельствах, в том числе с описанием всего эксперимента».

Формулировка Бора означала, что физика, как и любая наука, могла объяснить только результат наблюдений при заданных экспериментах и не имела права идти дальше в своих претензиях на знание. Для Эйнштейна это было абсолютно неприемлемо, поскольку предполагало определенный эпистемологический пессимизм и серьезное субъективное обременение. Наука и человек не перестанут стремиться узнавать то, что он называл «объективной реальностью», то есть узнавать, каковы вещи сами по себе. Бор предлагал оставить эту попытку и сосредоточиться на том, как люди получают знания, особенно в квантовом масштабе, приняв тот факт, что мы никогда не сможем преодолеть барьер своей способности познать действительность. Эйнштейн был убежден, что позиция Бора — исключительно промежуточный шаг на пути к более полной и цельной теории.


ПРИЧИННОСТЬ И ДЕТЕРМИНИЗМ

Одна из самых важных дискуссий, которые вели Эйнштейн и Бор, с тех пор повторившаяся бесчисленное количество раз, касалась причинности в интерпретации квантовой механики. Противники копенгагенской интерпретации утверждали, будто Бор уничтожил основополагающий столп науки — принцип причинности. Однако это обвинение происходило от распространенной путаницы между детерминизмом и причинностью. Принцип причинности гласит: «Все, что происходит, происходит по какой-то причине». В традиционной со времен Ньютона интерпретации этот принцип внешне означает как будто то же самое: «Одна причина всегда порождает одно и то же явление». Однако вторая формулировка справедлива только для одного типа причинности — детерминированной. Но не любая причинность обязательно детерминированная. Если, например, засеять поле пшеницей, какие-то из зерен взойдут, а какие-то — нет. Априори все зерна должны взойти, поскольку тип почвы один и тот же и среда одна и та же. Но этого не происходит. Зерна не прорастают, потому что без почвы, без воды, без солнечного света не взойдет ни одно семя. Все прорастающие зерна способны на это ввиду благоприятных условий, но эти условия не гарантируют, что взойдут все из них. Нечто подобное происходит в квантовой механике. Когда происходит какое-то явление, например радиоактивный распад, оно всегда обязано присутствию благоприятных условий. Но не всякий раз, когда эти условия присутствуют, можно утверждать, что распад произойдет. При этом отрицается не принцип причинности, а лишь возможность точно предсказать все, что случится. 

После неудачных попыток разбить теорию Гейзенберга и Бора Эйнштейну ничего не оставалось, кроме как принять ее, но не их интерпретацию квантовой механики. Эйнштейн верил, что со временем физика сформулирует более полную теорию, которая позволит отказаться от копенгагенской интерпретации и прийти к абсолютному и точному знанию об «объективной реальности».

Через несколько месяцев после окончания Сольвеевского конгресса 1927 года Эйнштейн выразил свое разочарование ироничными словами: 

«Философия успокоения Гейзенберга — Бора (или религия?) так тонко придумана, что представляет верующему до поры до времени мягкую подушку, с которой не так легко его спугнуть. Пусть спит». 

Эйнштейн был уверен, что рано или поздно квантовая система в том виде, как ее понимали Бор, Гейзенберг и Паули, рухнет. Но этот момент не наступил: Бор и сегодня все еще остается победителем в данной полемике.


НОВОЕ НАСЕЛЕНИЕ АТОМА

К 1930 году квантовая механика сформировала свои принципы, но оставалось применить их и проверить справедливость для возрастающего числа явлений, неизвестных до тех пор. У модели атома Бора была несколько суетливая жизнь с момента ее рождения, но основные черты оставались неизменными: положительное атомное ядро с электронами вокруг. Имелись два тесно взаимосвязанных вопроса: из чего состоит ядро и откуда берутся электроны, составляющие ^-радиоактивность?

Эксперименты Резерфорда 1911 года показали, что атом неоднороден: почти вся масса сосредоточена в центральной части, в ядре, вокруг которого по орбитам вращаются электроны. Постепенно формировавшаяся гипотеза сводилась к тому, что масса ядер различных атомов кратна массе ядра водорода, Н\ в связи с чем допускалось, что все ядра состоят из этого типа частиц, которые назвали «протонами».

Слово «протон» в начале XIX века ввел английский химик Уильям Праут (1786-1850), который заметил, что некоторые известные в его время атомные массы приблизительно кратны массе водорода. Термин Праута происходит от греческого понятия proto hyle — исходный, или первичный, материал. Эта гипотеза постепенно истаяла с повышением точности измерения атомной массы и с открытием новых элементов. Когда Резерфорд возродил эту гипотезу, пусть только в отношении атомного ядра, он решил использовать то же самое слово.

В результате своих исследований радиоактивности Резерфорд получил окончательное подтверждение существования Н* — протонов — во всех атомных ядрах. В 1919 году, изучая эффект столкновения а-частиц с атомами азота, он увидел, что последние испускают протоны. Когда Резерфорд удостоверился, что это не результат существования примесей водорода в экспериментальной установке, он сделал вывод: наблюдаемые протоны происходят из ядра азота. Это стало первым прямым доказательством существования протонов в атомах, не являющихся атомами водорода.

Итак, в 1920 году были известны две элементарные частицы: электроны и протоны. Также было известно, что р-излучение состоит из электронов, но что это, говоря словами Марии Кюри, «глубинные электроны». Электроны радиоактивности не располагались вокруг ядра, их энергия была намного больше, чем энергия спектральных атомных линий, так что их включали (наряду с протонами) в число ядерных компонентов. Таким образом, как показано на рисунке 2, в начале 1920-х годов атом представлял собой следующее. Ядро, состоящее из протонов и электронов, и оболочка, сформированная только электронами, распределяющимися по уровням энергии, согласно законам квантовой физики.

РИС. 2


Как распределялись протоны и «глубинные» электроны внутри ядра? Следует учитывать, что число протонов должно в два раза превышать число ядерных электронов, поскольку общий электрический заряд ядра равен общему электронному заряду оболочки, и таким образом атому удается оставаться электрически нейтральным. Законы электричества не объясняли, как протоны и электроны могут находиться в ядре в стабильном виде так, чтобы взаимные отталкивания не заставляли ядро распасться.

Одна из самых жизнеспособных догадок побуждала обратить внимание на а-радиоактивность. Она соответствовала ядрам гелия, которые (следуя модели протонов и электронов) должны были состоять из четырех протонов и двух электронов. Не вызывало сомнений, что эта структура особенно стабильна как внутри, так и снаружи ядра, и могло сложиться представление для лучшего понимания структуры и стабильности ядер, а также и явления радиоактивности.

Дело в том, что спустя более чем два десятилетия изучения радиоактивности, то есть типов излучений, их энергий и проникающей способности, их дисперсий с другими излучениями и прочими телами и так далее, теоретическое развитие практически оставалось на месте. Было очевидно, что понимание радиоактивности атомного ядра — это две стороны одной медали. Понимание пришло с развитием квантовой механики.

Снова блестящий рисковый молодой ученый, начало карьеры которого так же было связано с влиянием Бора, дал импульс этому развитию. Этим человеком был Георгий Гамов (1904-1968). Он родился в Одессе, изучал физику в Петрограде, где познакомился с другими подающими надежды студентами, Львом Ландау (1908-1968) и Дмитрием Иваненко (1904-1994). Вместе они создали группу «трех мушкетеров», чтобы обсуждать последние достижения квантовой физики.

Летом 1928 года, закончив докторантуру в Геттингене, Гамов развернул исследование, объяснявшее а-радиоактивность на основе постулатов квантовой механики. Вернувшись в Россию, Гамов решил поехать в Копенгаген, чтобы познакомиться с Нильсом Бором и показать ему свои расчеты. Он предстал перед Бором без предупреждения и без денег, он не планировал оставаться в городе, так как его визит должен был ограничиться несколькими часами. Но молодой ученый произвел такое впечатление на Бора, что эти несколько часов превратились в два года: 1928-1929 и 1930-1931 учебные годы.

Это стало началом обращения Бора к проблемам зарождающейся ядерной физики, которая принесла много неожиданностей в 1930-е годы, а кроме того, вновь тесно связала его со старым другом Резерфордом и экспериментальными результатами Кавендишской лаборатории.


ПАУЛИ ПРЕДЛАГАЕТ НОВУЮ ЧАСТИЦУ. НЕЙТРИНО

Возможно, самой заметной головоломкой 1920-х годов была энергия р-лучей (электронов), происходящих из радиоактивных источников. Два города, Берлин и Кембридж, и два человека, Лиза Мейтнер (1878-1968) и Чарльз Драммонд Эллис (1895-1980), были действующими лицами плодотворного научного спора, который привел к нынешнему пониманию ядра. Спор велся вокруг p-спектра радиоактивных материалов, то есть вокруг распределения энергии электронов, испускаемых радиоактивными веществами.

Альберт Эйнштейн и Нильс Бор, фото австрийского физика Паула Эренфеста, 1925 год.

Циклотрон в Институте теоретической физики в Копенгагене, построенный по распоряжению Бора.


Эллис и Мейтнер располагали сходными данными, но их интерпретации были различными. Зная постулаты зарождающейся квантовой физики, Мейтнер считала, что электроны, покидающие ядро, могут принимать только определенные постоянные значения энергии. Таким образом, β-спектр должен быть дискретным. Очевидно, что такой спектр заметить нелегко. Ядро испускает электроны и γ-излучение, которые, в свою очередь, сталкиваются с электронами атомной оболочки. Снаружи сложно различить, какие электроны происходят напрямую из ядра, а какие являются результатом вторичных процессов.

В Кембридже Эллис и Джеймс Чедвик (1891-1974) были убеждены, что спектр ядерных электронов непрерывен, то есть ядро испускает электроны со всеми значениями энергии от минимума до максимума, без учета квантовых скачков. Мейтнер полагала, что результаты Чедвика и Эллиса не имеют смысла, поскольку противоречат квантовой механике. Исследователи из Кавендишской лаборатории, в свою очередь, доверяли экспериментальной ценности своих результатов. Кроме того, Резерфорд не был сторонником квантовой физики, поэтому его не беспокоило, что экспериментальные результаты противоречат ее постулатам.

Здесь следует уточнить: когда мы говорим, что ядро испускает электроны, нужно учитывать, что в лаборатории нет отдельных ядер, есть макроскопические количества элементов, атомы которых испускают электроны. Как бы мало радиоактивной материи ни было в распоряжении, число атомов достигнет порядка нескольких биллионов. В лаборатории можно наблюдать лишь комбинированный результат действия всех этих атомов. Неудивительно, что при похожих экспериментальных результатах интерпретации различны. Мейтнер и Эллис наблюдали одно и то же — спектр 0-радиоактивности непрерывен, — но видели разные вещи.

Дискуссия Берлина с Кембриджем длилась почти десять лет, пока в период с 1927 по 1929 год стороны не пришли к соглашению, подтвердившему позицию английской команды: электроны 0-радиоактивности изначально имеют энергию, которая варьируется от минимального до максимального значения; спектр энергии этих электронов непрерывен. Казалось, под угрозой — некоторые основные идеи квантовой физики.

И не только они. Если атомы испускают электроны с переменной энергией, как возможно, что энергия до и после излучения всегда одна и та же? Бор выдвинул гипотезу, которую уже выдвигал некоторое время назад: отсутствие сохранения энергии в β-радиоактивности. На этот раз он не стал ничего публиковать, так как в переписке с коллегами смог оценить неприятие, которое вызывала подобная идея.

Другое решение, столь же отчаянное, в 1930 году предложил Паули. В знаменитом письме 4 декабря, направленном участникам конгресса о радиоактивности, Паули допустил, что с p-излучением ядро испускает нейтральную неизвестную до тех пор частицу, энергия которой соответствует энергии, недостающей электрону. Так, при каждом радиоактивном излучении ядро всегда испускает одно и то же количество энергии, и она распределяется переменным образом между электроном и нейтральной частицей. Эту частицу позже назвали «нейтрино», и хотя с фактом ее существования очень быстро согласились, саму ее обнаружили экспериментально только в 1956 году.


НА СЦЕНЕ ПОЯВЛЯЕТСЯ НЕЙТРОН

Весной 1932 года в Копенгаген хлынул непрерывный поток исследователей из Кавендишской лаборатории. В феврале того года Чедвик объявил о существовании нейтральных частиц, нейтронов, не имеющих электрического заряда, с массой, подобной массе протонов, присутствующих во всех атомных ядрах. Существование частиц не стало неожиданностью. Еще в 1920 году ввиду необходимости лучше понять состав атомных ядер Резерфорд выдвинул предположение о тесно связанных соединениях из протона и электрона, которые он назвал «нейтронами». Это предположение основывалось на существовании другой чрезвычайно стабильной структуры — α-частиц, которые должны были объяснить ядерную стабильность. Однако после некоторых безрезультатных попыток Резерфорд оставил поиск нейтронов.


ОТКРЫТИЕ НЕЙТРОНА

Различные команды ученых годами исследовали свойства радиоактивности полония-бериллия. При облучении атомов бериллия α-частицами, происходящими из радиоактивного полония, получались изотоп углерода и нейтральное излучение с высокой проникающей способностью по формуле:

4α2 + 9Ве413С6 + γ,

где у представляет собой нейтральное излучение, которое изначально истолковали как электромагнитное. Джеймс Чедвик изучал взаимодействие этого нейтрального излучения с различными элементами. Сначала он заметил, что нейтральное излучение полония-бериллия приводит в движение атомы водорода, но то же самое происходило и с атомами азота, которые в 14 раз тяжелее первых. Это было невозможно при электромагнитном излучении. Чедвик говорил: «Эти результаты, а также другие, которые я получил в ходе работы, сложно объяснить, если предположить, что излучение бериллия является квантовым. Сложности исчезнут, если предположить, что излучение вызвано частицами массы 1 и заряда 0, или нейтронами». Данную статью («Существование нейтрона», опубликована в 1932 году в журнале Nature) принято считать моментом рождения новой частицы, нейтрона. Происхождение этих нейтронов задано реакцией:

4α2 + 9Ве4 12С6 + 1n0.

где n обозначает нейтроны.


Это предположение исказило изначальное толкование открытия Чедвика. Одно дело экспериментально подтвердить, что существует нейтральное излучение (состоящее из частицы массы, схожей с массой протона), и совершенно другое — истолковать эти частицы как элементарные, основополагающие. Последний шаг был сделан не сразу: на то, чтобы весь мир признал основополагающий характер нейтронов, понадобилось почти два года. Между тем многие предпочитали думать, что нейтрон, как и а-частицы, — это соединение протона с электроном.

Среди первых, кто принял это радикальное толкование, были Паули, Гейзенберг и Бор. Последний организовал в Копенгагене в апреле 1932 года семинар по изучению недавнего открытия и следствий из него для структуры атомного ядра. Чтобы представить себе тот энтузиазм, с которым Бор воспринял новость о существовании нейтронов, обратимся к фрагменту письма, отправленного им Резерфорду после апрельского семинара: 

«Прогресс в исследовании ядерной структуры настолько скоростной, что задаешься вопросом, какие новости ждут нас завтра. [...] Пожалуй, я никогда еще так не хотел быть ближе к вам и к Кавендишской лаборатории». 

Если считать нейтрон элементарной частицей, а не соединением протона с электроном, то образ атомного ядра меняется радикально. Атом обрел иную структуру (см. рисунок 3): ядро, образованное протонами и нейтронами (частицами схожей массы, хотя первая обладает электрическим зарядом, а вторая нет), и несколько электронов вокруг ядра, число которых равно числу ядерных протонов.

РИС.З

У этой модели атома было много преимуществ относительно предыдущей, но был один очевидный недостаток. Если ядро состояло только из протонов и нейтронов, откуда испускались электроны β-радиоактивности? Чтобы ответить на этот вопрос, требовалось ввести новую частицу, которая была открыта в 1932 году, — позитрон.


КОСМИЧЕСКИЕ ЛУЧИ И ПОЗИТРОНЫ

С 1910 по 1912 год немецкие ученые Альберт Гокель (1860— 1927), Вернер Кольхёрстер (1887-1946) и австриец Виктор Франц Гесс (1883-1964) изучали тип излучения (неизвестного до той поры), происходящего из атмосферы. Поднявшись на аэростатах, исследователи заметили, что количество обнаруженного в атмосфере электрического заряда с высотой увеличивается. Это указывало на то, что излучение происходит из верхних слоев атмосферы или (почему бы и нет?) из космоса. Поэтому его назвали Hohenstrahlen, или Ultrastrahlen, дословно «излучения высот», или «излучения извне».

В 1925 году американец Роберт Эндрюс Милликен (1868- 1953) назвал это «космическими лучами». Неизвестное происхождение данного типа излучения окружало его мистическим ореолом, перед которым Милликен не мог устоять. Изучение космических лучей было частью большого проекта, который задумал американский физик. После открытия радиоактивности в конце XIX века ученые знали, что имеют дело с процессами трансмутации материи: одни атомы превращаются в другие с испусканием положительного (а), отрицательного (Р) и нейтрального (у) излучения. С тех пор перед воображением ученых открывались завораживающие возможности: использовать атомную энергию, синтезировать атомы в лаборатории, полностью постичь структуру атома... Следующие слова Милликена показывают нам, что его заинтересованность космосом связана с вопросами состава материи: 

«У радия и урана мы видим только распад [атомов]. Но где-то почти наверняка эти элементы постоянно как-то образуются. Возможно, они сейчас собираются в звездных лабораториях. [...] Сможем ли мы когда-нибудь контролировать этот процесс? [...] Если мы добьемся подобного, это будет новый мир для человека!» 

Для Милликена исследование космических лучей было способом изучить процессы, которые происходят на звездах — «фабриках Бога», как он их называл. Здесь можно отметить еще один интересный элемент его исследования: у Милликена имелась теория о происхождении атмосферного излучения до проведения экспериментальной работы. В то время как в Европе обсуждали не только происхождение такого излучения, но даже сам факт его существования, Милликен считал очевидным внеземное происхождение излучения в атмосфере. Он не мог доказать, что космические лучи на самом деле космические, поскольку не мог выйти за пределы атмосферы, однако, окрестив излучение так, уже навязывал свое видение этого явления. Милликен считал, что в процессе образования различных элементов из «доменных печей» звезд испускаются разные типы излучения как отходы этих процессов. Следовательно, изучение даст нам информацию об образовании атомов. Космические лучи — это «первые крики новорожденных атомов».

Проект космических лучей дал неожиданный результат. Карл Дейвид Андерсон (1905-1991), молодой американский исследователь, работавший под руководством Милликена, сфотографировал траектории космических лучей при их прохождении через туманную камеру (аппарат, который выявляет частицы ионизирующего излучения). Чтобы определить заряд излучения — как космического, так и радиоактивного происхождения, — к туманной камере применяется магнитное поле, которое искривляет траектории частиц в том или ином направлении, в зависимости от их заряда. Летом 1932 года Андерсон столкнулся со странным типом излучения. Судя по массе, частицы, которые он обнаружил, были электронами, но заряд их был положительным, так что они скорее походили на протоны. Было и третье толкование, которому Милликен противился, но Андерсон в итоге решился опубликовать его самостоятельно: траектории соответствовали положительным электронам (получившим затем название позитронов). Так что пришлось добавить новую элементарную частицу к уже существующим — протону, электрону и нейтрону.


ФОТОГРАФИЯ КАРЛА АНДЕРСОНА

Обнаружение субатомных частиц возможно благодаря их электрическому заряду. При пересечении жидкой или нестабильной газообразной эмульсии эти частицы образуют в месте прохождения след из мельчайших пузырьков, похожий на след самолета в атмосфере.

Изучая космические лучи, Андерсон заметил, что не все электроны происходят из атмосферного излучения, некоторые из них, кажется, движутся по направлению к нему... если только это не положительные электроны! Чтобы прояснить, идет речь об отрицательных электронах с восходящей траекторией или о новом типе частицы, похожей на электрон, но с положительным зарядом и нисходящей траекторией, Андерсон поставил свинцовую пластинку посередине их траектории. Так он заметил, что кривизна траектории частицы больше в нижней части. То есть она теряет энергию при прохождении сквозь свинец сверху вниз. И Андерсон смог утверждать, что его наблюдения соответствуют вероятным положительным электронам. Справа показана фотография, сделанная Андерсоном.


Как и в случае с нейтроном, едва Андерсон убедился в реальности новой сущности (положительных электронов), самой сложной задачей стало истолковать, что это за частицы и откуда они исходят. Поль Дирак (1902-1984), молодой физик- теоретик, который обосновался в Кембридже, но оставался на связи с Бором, во время визита в Копенгаген в 1928 году высказал предположение о существовании положительных электронов. Он развил квантовую теорию для релятивистского движения электронов, которая, несмотря на математическую сложность (Дирак изобрел новую систему обозначений, используемую до сих пор), успешно предсказывала их поведение. Единственная проблема теории заключалась в том, что она предоставляла решения для поведения электронов как для положительных энергий, так и для отрицательных.

Что означал электрон с отрицательной энергией? Тогда Дирак не нашел правильного толкования этого результата. Но когда появились положительные электроны — позитроны, — их практически мгновенно отождествили с электронами отрицательной энергии: речь не об электронах с отрицательной энергией, а об электронах с положительным зарядом — позитронах.

РИС . 4

На рисунке показано "рождение" пары электрон-позитрон на основе фотона. У этих частиц различные вогнутости из-за их противоположного электрического заряда. Фотон невидим, потому что на имеет заряда.


В то же время в Кембридже Патрику Блэкетту (1897-1974) и Джузеппе Оккиалини (1907-1993) удалось изготовить позитроны в лаборатории, то есть получить позитроны не как результат случайных и непредсказуемых явлений, вроде космических лучей, а как результат взаимодействия излучения с материей. Один из прогнозов Дирака заключался в том, что при определенных обстоятельствах энергия у-излучения может трансформироваться в частицы, рождая пары электрон-позитрон, как показано на рисунке 4. Одновременно обе частицы могут взаимно аннигилировать и превращаться в γ-излучение.

С самого начала явление не казалось совсем уж невообразимым. Несколько лет назад было принято знаменитое уравнение Эйнштейна, Е = mc2, связавшее материю и энергию. Но на сей раз это отношение было впервые сфотографировано в лаборатории. И удалось это сделать Блэкетту и Оккиалини.

Таким образом, позитрон добавлял неожиданную характеристику понятию элементарной частицы: они могут создаваться и аннигилировать, превращаясь в энергию. То, что не допускалось для атома Дальтона в начале XIX века, теперь совершали даже его компоненты.


ЯДЕРНАЯ ФИЗИКА

Летом 1932 года семья Боров переехала в особняк, который фонд •«Карлсберг» предоставлял тому, кого исполнительный комитет сочтет самым влиятельным датчанином в культуре или науке на национальном и международном уровне. Проживать в этой резиденции было честью, но это также подразумевало многочисленные официальные обязанности, поскольку в особняке проводились встречи со знатными лицами и выдающимися деятелями политики, экономики и культуры. С этими задачами Боры — особенно Маргрет — всегда справлялись как радушные хозяева.

Первыми почетными гостями, которых Боры приняли в своей новой резиденции в сентябре 1932 года, стали Резерфорд с супругой, которым недавно были пожалованы титулы лорда и леди Резерфорд Нельсон. Это, безусловно, стало особенно волнительным моментом для обоих друзей. С тех пор как состоялась их первая встреча, миновало 20 лет. Тогда информация о структуре атома была минимальной, было известно лишь, что существуют электроны. Резерфорд и Бор изменили это представление за несколько лет работы в Манчестере, и сейчас они видели, как их детища, Институт теоретической физики в Копенгагене и Кавендишская лаборатория в Кембридже, стали центрами мировой физики, ядерной физики.

Действительно, 1932 год считается чудесным годом для Кавендишской лаборатории: там не только был открыт нейтрон и «рожден» позитрон, но также успешно создан и запущен первый ускоритель частиц, с помощью которого физики Джон Дуглас Кокрофт (1897-1967) и Эрнест Уолтон (1903-1995) добились первого искусственного радиоактивного распада в истории.

Доказательство существования нейтрона и позитрона, наряду с предположением о существовании нейтрино, радикально изменило понимание атомного ядра, и уже можно было дать первое связное объяснение первому ядерному явлению — радиоактивности. Ведь если ядро состоит лишь из протонов и нейтронов и точно известно, что β-излучение состоит только из электронов, которых нет в оболочке атома, откуда берутся эти электроны? В 1930 году Паули ввел почти призрачную частицу (не имеющую заряда, массы и практически необнаружимую) — нейтрино,— которая испускалась при β-излучении.

Первую теорию, все еще справедливую в ее основных принципах, в декабре 1933 года сформулировал Энрико Ферми (1901-1954). Эта теория была настолько прогрессивной, что при первых попытках опубликовать статью издатели научных журналов отказывались печатать ее, посчитав исключительно умозрительной. И это после 20 лет постоянных прорывов в физике!


Ученые зависят не от идей одного человека, а от комбинированной мудрости тысяч людей, которые все вместе думают над одной и той же проблемой. Каждый из них вносит свой маленький вклад в структуру знания, которая постепенно выстраивается.

Эрнест Резерфорд


Теория Ферми гласит, что в ядре нейтрон может трансформироваться в протон + электрон + нейтрино, при этом последние два испускаются вне ядра. То же самое может происходить с трансформацией протона в нейтрон + позитрон + нейтрино, благодаря чему образуется искусственная радиоактивность, которую некоторое время назад открыли супруги Ирен Кюри (1897-1956), дочь Марии Кюри, и Фредерик Жолио-Кюри.

При этих трансформациях масса, заряд и другие величины, например спин, сохранялись. Как видно, Ферми укрепил в этой теории идею о том, что элементарные частицы не так уж и элементарны, они способны трансформироваться одна в другую.

Идею подхватил Гейзенберг, а через некоторое время японец Хидэки Юкава (1907-1981) объяснил, как протонам и нейтронам удается оставаться такими сплоченными в столь маленьком пространстве, как атомное ядро. С учетом действия единственных известных на тот момент сил — гравитационной и электромагнитной — эта сплоченность была невозможной из-за электростатического отталкивания, которое должны были испытывать протоны (все с положительным зарядом).

РИС . 5

Ядерные протоны и нейтроны сплочены благодаря их постоянной смене сущностей, результату взаимообмена мезона.


Гейзенберг ввел термин «нуклон» в отношении как протонов, так и нейтронов. Его идея состояла в том, что протоны постоянно превращаются в нейтроны, а те — в протоны, и именно эта постоянная смена сущности поддерживает нуклоны сплоченными (см. рисунок 5). Юкава в 1934 году допустил, что эта трансформация протонов в нейтроны, и наоборот, осуществляется с созданием, взаимообменом и аннигиляцией промежуточной частицы — мезона.

В 1937 году в космических лучах была обнаружена новая частица, характеристики которой походили на предсказанные Юкавой, включая непродолжительность их жизни. Так что умозрительная частица Юкавы была сразу же отождествлена с мезоном, замеченным в космических лучах. После Второй мировой войны это отождествление было признано неверным (мезон космических лучей и мезон Юкавы оказались двумя различными частицами), но это способствовало созданию первого устойчивого образа атомного ядра и пониманию, что его внутренние силы отличаются от известных до тех пор. Это стало первым шагом на пути к тому, что мы сегодня знаем как «слабое взаимодействие» (сила Ферми в радиоактивности) и «сильное взаимодействие» (сила Юкавы).


ЭКСПЕРИМЕНТАЛЬНАЯ НАУКА В КОПЕНГАГЕНЕ

С момента открытия в годы Первой мировой войны Института теоретической физики основным оборудованием в нем были бумага и карандаш, доска и мел, а также постоянно пополнявшийся книжный и журнальный фонд. В 1930-х Бор реорганизовал свое учреждение и превратил его также в экспериментальный центр ядерной физики первого порядка.

Успех первого ускорителя частиц Кокрофта и Уолтона в Кембридже подстегнул сооружение других ускорителей и развитие новых технологий во многих центрах физики во всем мире. Бор решил, что Копенгаген не может отстать в этой набирающей обороты гонке. Благодаря авторитету и административным способностям Бор получил финансирование, достаточное для строительства не одного, а трех ускорителей: двух линейных и одного циклического, или циклотрона.

Смысл ускорителей был не только в изучении ядерной физики на более глубоком уровне, но и в производстве радиоактивных изотопов для медицинских целей. И именно так сложился симбиоз биологии с физикой в Институте Бора.

Дьёрдь де Хевеши, с которым Бор уже сотрудничал в Манчестере, отвечал за развитие биологической части ядерного проекта. Идея заключалась в создании радиоактивных изотопов низкой интенсивности для использования в качестве маркеров в тканях и органах.


ЛИНЕЙНЫЕ И ЦИКЛИЧЕСКИЕ УСКОРИТЕЛИ

Гонка строительства все более мощных ускорителей частиц в 1930-е годы имела конкретную цель: контролировать в лаборатории явления высокой энергии, которые на тот момент были возможны только в непредсказуемых процессах космических лучей. Чтобы ускорить частицы при высокой энергии, нужно чтобы они были электрически заряженными. Нейтральные частицы, такие как нейтроны или сами атомы в обычном состоянии, могут быть ускорены, только если что-то предварительно ускоренное столкнется с ними. Есть два вида ускорения частиц с электрическим зарядом: линейное и циклическое. В первом случае частицы ускоряются электрическим полем: создается разница потенциалов между концами трубки, образуется электрическая энергия, ускоряющая заряженную частицу. Существенный недостаток этой техники: сложно создать большие разницы потенциалов без произведения электрического разряда, который бы их аннулировал. В циклических ускорителях используются одновременно электрическое и магнитное поля. Первое служит для небольшого ускорения частицы, а второе — для искривления ее траектории, чтобы частица вновь прошла через электрическое поле и вновь была ускорена. Так достигают того, чтобы одно и то же электрическое поле давало много импульсов заряженным частицам, чем увеличивало бы их скорость.

Циклотрон Калифорнийского университета, 1939 год.


Радиоактивность всегда рассматривали как форму проникающей энергии, с помощью которой можно сжигать и разрушать недоступные ткани. Так, вскоре радиоактивность более или менее успешно была направлена на борьбу с раком. Хевеши рассуждал иначе и занялся производством радиоактивных материалов, химические и биологические свойства которых были хорошо известны. Энергия излучения этих веществ должна быть очень низкой, но достаточной для обнаружения с помощью очень чувствительных приборов. Получив эти изотопы, их вводили в тело живого существа и прослеживали маршрут благодаря радиоактивности. С помощью этого метода можно было обнаружить, например, препятствия, вероятные признаки аномалии, порока развития или опухоли.


РАСЩЕПЛЕНИЕ ЯДРА

Из всех частиц, которые были обнаружены в 1930-е годы, нейтрон стал «звездой» физики. Ввиду его нейтрального заряда было относительно легко использовать нейтроны для исследования внутреннего строения ядра, поскольку они им не притягивались и не отталкивались. Многие физические лаборатории в Европе и некоторые в США и Японии занимались ядерным исследованием с помощью нейтронов. Вскоре было замечено, что иногда при бомбардировке атомов нейтронами последние поглощаются ядром, в связи с чем оно превращалось в другой изотоп этого же самого элемента. Но новые ядра были нестабильны, поэтому быстро распадались, испуская радиоактивность. Так перешли к изготовлению новых радиоактивных элементов. Особенно завораживающими были трансурановые элементы — те, что шли за ураном в периодической таблице.

Проект, который навсегда изменил ядерную физику, реализовали Лиза Мейтнер, Отто Ган (1879-1968) и молодой химик Фриц Штрассман (1902-1980). Было ясно, что если физическая часть заключается в бомбардировке атомов нейтронами, то для анализа полученных атомов нужны химики. Но в 1938 году Мейтнер, имевшая еврейские корни, была вынуждена покинуть Берлин, и проект остался в руках Гана и Штрассмана. У Мейтнер возрастало ощущение, что какая-то из их гипотез неверна, поскольку поведение трансурановых элементов не совпадало с ожидаемым.

Говорят, что на встрече в Институте Бора в Копенгагене Мейтнер посоветовала Гану снова проанализировать эти элементы в надежде, что на самом деле они не трансурановые, а что это барий, элемент 56 периодической таблицы. Если бы все обстояло так, то результатом бомбардировки ядер нейтронами был бы не элемент с большим атомным номером, а расщепление ядра. По возвращении в Берлин Ган и Штрассман провели анализ, который предложила Мейтнер, и убедились в ее правоте. Ядро разделилось посередине.

Казалось, что у манипуляций с атомными ядрами нет предела. Можно было расщеплять ядра, используя нейтроны в качестве снарядов. Идея была не нова. С тех пор как Эйнштейн вывел уравнение Е=mc2, научная фантастика увлеклась возможностью трансформации материи в энергию, чтобы получить ее неограниченный источник. Но на пороге Второй мировой войны фантастика стала ужасающей реальностью. Когда были заложены научные методы деления ядра, использование такой энергии в целях разрушения стало вопросом времени.


ГЛАВА 5 Мир во время войны

Две мировые войны XX века изменили облик науки. Прежде считалось, что наука — это чистое знание, не имеющее коммерческого или милитаристского применения. Но это оказалось не так, и две войны окончательно опровергли миф о безгрешности науки. Бора и его школу тогда постигло жесточайшее разочарование: нацистские преследования, изготовление и испытание атомной бомбы в Японии.

С начала войны Нильс Бор умело добывал финансирование для своих проектов. Фонд «Карлсберг» и датское правительство были основными его покровителями, пока он учился в Копенгагене, затем в Кембридже и Манчестере, а также в первые годы существования Института теоретической физики. Но этих источников вскоре оказалось недостаточно для реализации плана по расширенйю, который был на уме у Бора.

В ходе первой поездки в США в 1923 году физик лично связался с фондом «Рокфеллер». Нобелевский лауреат прошлого года, он воспользовался своим международным авторитетом, чтобы убедить руководителей фонда поучаствовать в расширении института и принять на себя часть расходов ряда исследователей, желавших поработать в институте некоторое время. Этот визит помог Бору установить постоянные отношения с различными филантропическими организациями, связанными с фондом «Рокфеллер».

На самом деле Бор был первым получателем средств от International Education Board (IEB) — агентства, зависевшего от фонда «Рокфеллер» и основанного в том же самом 1923 году. Его целью было поощрять научные исследования в мире. Именно это агентство больше других способствовало тому, чтобы будущие американские ученые получили образование в лучших университетах и исследовательских центрах Европы. Таким образом, предполагалось, что в США постепенно будет сформирована научная база, пусть даже этот процесс затянется. Но в 1930-е годы ход истории ускорился.


РОКФЕЛЛЕР И НАУКА

Джон Рокфеллер (1839-1937) был, пожалуй, самым богатым человеком в новой и новейшей истории. Он родился в штате Нью-Йорк и сделал состояние на нефтяной монополии, которой он добился во второй половине XIX века. Говорят, что с самого первого своего жалованья Рокфеллер передавал часть денег на образовательные и санитарные нужды в местную церковь. И в этом были основные цели всей его благотворительности, например создание Чикагского университета и нескольких лучших медицинских центров в мире. После Первой мировой войны значительные средства фонда «Рокфеллер» были направлены на развитие науки. Следуя популярной в то время идее, Рокфеллер был убежден, что прогресс позволит избежать новых войн. Идея основывалась на несколько наивной вере в то, что наука морально и идеологически нейтральна.

Джон Рокфеллер.


ТРЕТИЙ РЕЙХ ПРОИЗВОДИТ ПЕРЕВОРОТ В ЕВРОПЕЙСКОЙ НАУКЕ

Правительство Гитлера 7 апреля 1933 года распорядилось исключить из университетов профессоров, преподавателей и исследователей по политическим и/или расовым мотивам. Так началась зачистка интеллектуального мира. Это событие неожиданно и радикально изменило географию науки. Менее чем за десятилетие бегство ученых и академиков из стран, захваченных Германией, в США превратило это государство в мировой научный центр.

Фонд « Рокфеллер» пересмотрел политику. Если до тех пор его целью было способствовать образованию молодых ученых в лучших европейских центрах, то в 1933 году руководство приняло решение поддержать преследуемых ученых, многие из которых уже сделали карьеру, и трудоустроить их. Американские университеты и научные институты получили штат высочайшей квалификации. Один историк науки назвал это «подарком Гитлера Америке».

Все изменилось и для Бора и его института. Раньше сюда съезжались молодые ученые, здесь проходило их профессиональное становление. Теперь же центр наводнили исследователи с опытом, им нужна была большая свобода действий и меньшая интеллектуальная помощь со стороны Бора. Джеймс Франк (1882-1964) из Гёттингена и Дьёрдь де Хевеши из Фрайбурга были первыми в этом длинном списке. Оба старые друзья Бора стали нобелевскими лауреатами в 1925 и 1943 годах соответственно (первый по физике, вместе с Густавом Герцем, а второй по химии) за применение модели атома датского физика.

Бор не ограничивался принятием в центр некоторых преследуемых ученых. Его международные контакты, особенно с фондом « Рокфеллер», также позволили ему помогать ученым получить должность в других странах, ввиду ограниченных возможностей Дании. Одним из способов поддержки было предоставление гранта на годичное исследование. Таким образом, для ряда ученых Копенгаген стал трамплином.

Одна из самых показательных историй случилась с Энрико Ферми и его супругой. В 1938 году итальянский физик получил Нобелевскую премию за свою работу с нейтронами и, конечно же, собирался в Стокгольм. Итальянские власти, которые вслед за немецкими издали в том году первые антисемитские законы (затрагивавшие Лауру Ферми), не могли запретить Ферми присутствовать на церемонии награждения, но установили строжайшее наблюдение за парой. Чтобы не вызвать подозрений, супруги уехали в Швецию со скудным багажом и после церемонии отправились в Копенгаген, где Бор разместил их у себя в резиденции. Оттуда они уехали прямо в США, где в Чикагском университете Ферми изготовил первый ядерный реактор в истории, а затем стал одним из четырех ученых, возглавивших Манхэттенский проект.

В своей антисемитской речи сам Гитлер признавал, что его кампания может повредить немецкой науке:

«Если увольнение еврейских ученых будет означать уничтожение современной науки в Германии, на некоторое время нам придется смириться с Германией без науки».


ЗА ЖЕЛЕЗНЫМ ЗАНАВЕСОМ

Германия была не единственным местом, где в 1930-е годы ученые оказались под угрозой из-за преследований евреев и инакомыслящих. Сталин начал осуществлять зачистки и ограничивать передвижение советских исследователей в тот же период.

Одним из первых бежал Георгий Гамов. В 1933 году он вернулся в Советский Союз, но власти запретили ему поездку в Брюссель на Сольвеевский конгресс. Вмешательство Бора стало решающим: он поручился советским властям, что Гамов вернется на родину. К разочарованию самого Бора, ситуация сложилась не так, и после конгресса Гамов уехал в США, где попросил политического убежища. Возможно, поэтому в случае с Петром Капицей (1904-1984) все произошло по-другому. После десяти лет работы в Великобритании и назначения директором новой лаборатории физики низких температур, которую Резерфорд построил для него в Кавендише. Капица был вынужден остаться в Советском Союзе и не вернулся в Кембридж после летних каникул 1934 года. Вмешательство физиков, разделявших марксистские взгляды, например Поля Дирака, не дало результата. Капице так никогда и не позволили покинуть страну.

Петр Капица (слава) рядом с Николаем Семеновым, лауреатом Нобелевской премии по химии 1956 года. Борис Кустодиев, 1921 год. 


Всего Германию покинули около 1500 ученых, 15 из них получили Нобелевскую премию в годы изгнания.

Перед лицом трагедии преследования режимом Гитлера некоторые предпочли иной путь. Макс Планк и Вернер Гейзенберг — самые примечательные примеры, по крайней мере в истории физики. Они оба противопоставили свой патриотизм правам человека, несмотря на свое несогласие с нацистами. Они помогали Германии выиграть войну, но они делали это больше для того, чтобы избежать нового унижения своей страны, чем из симпатии режиму.


ВИЗИТ С ГОРЬКИМ ПОСЛЕВКУСИЕМ

В первые месяцы войны Дания могла занимать центральную роль в спасении изгнанников, но нейтралитет, который она соблюдала в Первой мировой войне, на этот раз был невозможен. В апреле 1940 года немецкие войска захватили эту маленькую скандинавскую страну, чтобы «охранять ее нейтралитет». Это больше походило даже не на аннексию, как в случае с Австрией или с Польшей, а на косвенный контроль страны нацистами.

Эта ситуация затянулась до 1943 года, когда датское правительство отказалось объявить чрезвычайное положение и наказать противников нацизма. Германия получила полную власть над Данией, и положение изменилось к худшему. Если до того времени антисемитские законы не означали неминуемой угрозы, то теперь уже никто не был в безопасности — даже Бор и Маргрет, имевшие еврейские корни. Они оба бежали из Дании 29 сентября 1943 года. До последнего Бор мог продолжать работать в своем институте. Часть его исследований сосредоточилась на недавно открытом делении ядра и возможности найти практическое применение этому источнику энергии, что поначалу было совсем не очевидно.

В октябре 1941 года немцы организовали конгресс по астрофизике в Копенгагене, на котором присутствовали несколько физиков, среди них Гейзенберг. Бор был в числе приглашенных, но отказался участвовать в этом мероприятии. Встреча двух старых друзей и коллег все же состоялась, хотя и в очень напряженной обстановке. Бор был пострадавшим от захвата Дании, а Гейзенберг был немцем, который не выступил публично и открыто против режима Гитлера. В тот момент старая дружба омрачилась чрезвычайными военными обстоятельствами.

Осознавая, что их разговор может прослушиваться, Бор и Гейзенберг отправились на прогулку по садам резиденции «Карлсберг». О чем они говорили эти несколько минут, неясно, и в научной фантастике данный эпизод используется в качестве повода для всяческих предположений. Известно лишь, что Бор вернулся с этой короткой встречи рассерженным и отношения ученых серьезно пострадали от многолетнего разрыва, сохранившегося даже после окончания войны.

Предположения относительно этой встречи касаются того, обсуждали ли физики создание атомной бомбы, и если так, то что знал каждый из них о его технической осуществимости? Вероятнее всего, в разреженной обстановке взаимного недоверия разговор состоял из незаконченных фраз и был полон недопонимания. Одной из тем, которые витали в воздухе того времени, стала тема моральной ответственности ученых ввиду их сотрудничества с военными.


БОР В ИЗГНАНИИ

В начале 1943 года, незадолго до своего бегства, Бор получил письмо из Англии в формате, характерном для шпионских фильмов, — почти микроскопическую пленку, спрятанную в ключе. В письме Чедвик предлагал ему эмигрировать в Beликобританию и принять участие в «Мауд Коммити». Этим кодовым словом был назван британский проект разработки оружия на основе ядерной энергии. Тогда Бор предпочел работать в Дании, полагая, что там он сможет лучше противостоять нацистскому режиму. Но когда положение стало нестерпимо опасным для Боров, они бежали в Швецию, где Маргрет оставалась до конца войны. Нильс отправился в Англию на военном самолете. Там его встретили Чедвик и представители британского правительства, которые познакомили его с достижениями в области сооружения атомной бомбы.

Конгресс в Копенгагене. В первом ряду слева направо: Клейн, Бор, Гейзенберг, Паули, Гамов, Ландау и Крамере, 1930 год.

Бор с Эйзенхауэром (в центре) и Генри Фордом II на вручении премии «Атомы во имя мира», 1957 год.

Ученый с Елизаветой II, май 1957 года.


В самом начале войны американцы и британцы образовали соответствующие комитеты по изучению возможности создания урановой бомбы. Сперва это были небольшие проекты, но в 1942 году стало ясно, что программа возможна только в промышленном масштабе. С учетом многочисленных технических сложностей очищение урана и полония требовало огромных установок. Так британцы решили объединить усилия с американским проектом.

В декабре 1943 года Бор переехал в США, где ему вручили новые документы. Теперь его звали Николас Бейкер, и рядом с ним всегда был телохранитель. Проект Манхэттен уже вовсю развивался, так что вклад Бора стал скорее вкладом отца семейства, который привнес надежность и доверие в атомную и ядерную программу, разработанную многими его учениками и друзьями, которых он знал по Копенгагену.

Главной заботой Бора в 1944 году и в начале 1945 года было использование всех своих политических связей, чтобы напомнить об ответственности в случае успеха проекта Манхэттен, то есть если атомная бомба будет создана. Центральная идея Бора заключалась в том, что ядерная энергия должна стать инструментом установления мира во всем мире, и следовательно, не может быть секретов между американскими, британскими и советскими учеными. Хотя непосредственным врагом на тот момент был Гитлер, несложно предвидеть, что в конце войны назрел другой конфликт — между западными союзниками и Советским Союзом. Бор твердо верил, что этого удастся избежать, если установить полное доверие между обоими блоками.

Он дошел до Рузвельта и Черчилля, но эти беседы имели негативные последствия. Оба руководителя встретились в Нью-Йорке в конце 1944 года и согласились, что не доверяют датскому физику и его планам. За шагами Бора стали пристально следить, опасаясь, как бы его международная программа не стала предлогом для передачи информации о проекте Манхэттен Советскому Союзу. Таким образом, защита, которую Бору обеспечивали в США, обратилась слежкой за его связями и намерениями.

В июне 1945 года Бор вернулся в Англию и воссоединился с супругой. Германия капитулировала, и война в Европе закончилась. Через несколько недель, 6 и 9 августа, урановыми и плутониевыми бомбами были стерты с лица земли Хиросима и Нагасаки. Через три дня Бор опубликовал свою первую статью в «Таймс», в которой утверждал, что единственный способ контролировать использование ядерной энергии — это «свободный доступ ко всей научной информации и международный контроль всей деятельности, связанной с ней». Это стало началом его публичной кампании за глобализацию науки.


ВОЗВРАЩЕНИЕ ДОМОЙ

На кладбище Ассистенс в Копенгагене погребены многие важнейшие фигуры в истории Дании. В XVIII веке здесь хоронили бедняков, а в XIX веке оно стало местом, где нашли успокоение выдающиеся люди нации. Здесь выделяется массивный памятник: увенчанная лавровым венком гранитная колонна с совой Минервы, символом философской мудрости в западной культуре.

Тут похоронен Нильс Бор, которому, возможно, не понравилась бы подобная вычурность. Однако это сооружение передает масштабы влияния, которое имел Бор на общественную жизнь Дании и всего мира до своей скоропостижной смерти в Копенгагене 18 ноября 1962 года.


Каждую произнесенную мной фразу следует понимать не как утверждение, а как вопрос.

Нильс Бор


В Дании к Нильсу и Маргрет действительно относились как ко второй королевской семье. Бор тогда был самым знаменитым датчанином в мире, и в резиденции «Карлсберг» разворачивались многие действия национального и международного значения. Здесь не единожды побывали представители королевской семьи Дании, в том числе по случаю дня рождения Бора, а также ряд знаменитых людей, таких как королева Елизавета II Английская с супругом, принц Японии, президенты Индии и Израиля.

По возвращении в Данию после войны Бор продолжал активно бороться за мир во всем мире. Два показательных момента говорят о его достижениях в эти годы. Первый — это публикация открытого письма Организации Объединенных Наций, в котором уже в разгар холодной войны он настаивал, что предупредить новые конфликты можно только в результате открытого научного общения. Другой момент — вручение Бору в 1957 году премии «Атомы во имя мира», учрежденной американским правительством для поощрения использования ядерной энергии в мирных целях.

Свою научную задачу Бор видел в поддержании операционной базы Института теоретической физики, его института. Ученый продолжал пополнять оснащение института, чтобы обеспечить интенсивную работу, когда его самого уже не будет. Так и сложилось. В 1965 году институт получил имя, которое носит до сих пор, — Институт Нильса Бора.

Список рекомендуемой литературы

Gamow, G., Biografia de la ftsica, Madrid, Alianza, 2007.

Gribbin, J., Historia de la ciencia, 1543-2001, Barcelona, Critica, 2003.

—: En busca del goto de Schrodinger, Barcelona, Salvat, 1994. Kragh, H., Generaciones cuanticas: una historia de la ftsica en el sigjio xx, Madrid, Akal, 2007.

Lahera, J., Bohr, de la teoria atomica a la ftsica cuantica, Madrid, Nivola, 2004.

Lindley, D., Incertidumbre: Einstein, Heisenberg, Bohr у la lucha por la esencia de la ciencia, Madrid, Ariel, 2008.

Rosenblum, B. et Kuttner F., El enigma cuantico, Barcelona, Tusquets, 2012.

Sanchez-Ron, J.M., Historia de la ftsica cuantica. Elperiodo fundacional, Barcelona, Critica, 2001.

Strathern, P., Bohr у la teoria cuantica, Madrid, Siglo XXI, 1999.

Указатель

Е=mc2 91, 134

Авогадро, Амедео 30

Адлер, Эллен 18, 27

Андерсен, Ханс Кристиан 17

Андерсон, Карл Дейвид 125, 126

атомная бомба 7, 11, 13, 135, 142, 144, 145

атомное ядро 89, 90, 94-96, 100, 101

Беккерель, Анри 55, 56

Блэкетт, Патрик 127

Больцман, Людвиг 35, 36 Бор

Дженни 18

Кристиан 17, 18

Маргрет (Маргрет Норлунд) 13, 46, 50, 64, 73, 74, 83, 103, 128, 142, 144, 146

Харальд 18, 44, 50, 74, 84

Борн, Макс 94, 98, 102

Браге, Тихо 17, 19

Бройль, Лунде 100, 102, 105, 110

Брэгг, Уильям Генри 100

Гамов, Георгий 73, 117, 118, 140, 143

Ган, Отто 133, 134

Гаудсмит, Сэмюэл 96

Гейгер, Ханс 57-59

Гейзенберг, Вернер 11, 13, 84, 92, 94, 96-98, 100, 102-105, 114, 115, 122, 129, 130, 141-143

Гей-Люссак, Луи Жозеф 30

Герц, Генрих 99, 139

Гесс, Виктор 124

Гокель, Альберт 124

Дальтон, Джон 24-26, 28-31, 33, 34, 42, 127

Дарвин, Чарльз Галтон 62, 63, 90

деление ядра 13, 134, 142

детерминизм 10, 114

Динесен, Исак 17

Дирак, Поль 126, 127, 140

Друде, Пауль 44

Жолио-Кюри, Фредерик 129

Зеемана эффект 89, 91, 94

Зееман, Питер 91

Зоммерфельд, Арнольд 75-77, 84, 87, 89-95, 101

Иваненко, Дмитрий 118

Институт теоретической физики в Копенгагене 10, 13, 73-75,

101, 102, 119, 128, 131, 137, 143

Кавендишская лаборатория 37-39, 49-51, 55, 83, 118, 120, 121, 123, 128, 140

Канниццаро, Станислао 31

Капица, Петр 140

квантовая механика 9, 10, 13, 69, 94, 95, 102, 105, 107, 109-112, 114, 115, 117, 118, 120

Клаузиус, Рудольф 35

Кнудсен, Мартин 63, 71

Кокрофт, Джон Дуглас 128, 131

Кольхёрстер, Вернер 124

Комптон, Артур 110

Конт, Опост 33

копенгагенская интерпретация 10, 13, 110, 111, 114, 115

копенгагенский дух 79

корпускулярно-волновой дуализм 105, 112

Кристиансен, Кристиан 18, 45, 46

Кюри

Ирен 129

Мария 55, 56, 116, 129

Пьер 55

Лавуазье, Антуан 26, 28

Ландау, Лев 118, 143

Лоренц, Хендрик Антон 91, 111

лучи

космические 124-127, 130, 132

рентгеновские 56, 97, 99

Максвелл, Джеймс Клерк 35, 36, 39, 52, 64, 85, 99

Марсден, Эрнест 57-59

«Мауд Ком мити» 144

Мейтнер, Лиза 118, 120, 133, 134

Менделеев, Дмитрий 31-34, 60, 89

Милликен, Роберт Эндрюс 124, 125

модель атома

Бора 9, 10, 13, 68-70, 75-77, 84, 85, 87-90, 94, 101, 115, 123, 139

Томсона 53

нейтрино 107, 118, 121, 128, 129

нейтрон 13, 61, 107, 121-123, 125, 128-130, 132, 133

неопределенность 10, 113

Ньютон, Исаак 9, 22, 28, 37, 40, 63, 65, 70, 85, 86, 99, 114

Оккиалини, Джузеппе 127

относительность 55, 76, 77, 84, 85, 92, 100, 104, 110, 111

Паули, Вольфганг 92, 94-99, 102, 115, 118, 121, 122, 128, 143

Планка постоянная 7, 68, 76, 77, 79, 84, 87, 88

Планк, Макс 44, 66, 71, 75, 79, 83, 99, 141

позитивизм 33

Праут, Уильям 116

принцип

дополнительности 101-105, 109, 110, 112

запрета 95, 96, 102

неопределенности 98, 104, 105, 110, 112

соответствия 13, 79, 84-88, 90, 94

Пристли, Джозеф 26

причинность 7, 113, 114

Проект Манхэттен 11, 141, 144, 145

протон 116, 117, 121-123, 125, 128-130

радиоактивность 9, 52, 55-57, 59, 60-62, 74, 90, 94, 97, 99, 114-118, 120-124, 128-131, 133

Резерфорд, Эрнест 50, 52, 55-63, 66, 67, 69, 70, 72, 83, 115, 116, 118, 120, 121, 123, 128, 129, 140

Рокфеллер, Джон 138

Рузвельт, Теодор 145

света природа 10, 41, 56, 57, 65-67, 70, 91, 96, 98-100, 110, 114

Сольвеевские конгрессы 109, 111, 115, 140

сохранение энергии 90, 91, 121

спектр 65-70, 76, 84, 88-91, 94, 102, 118, 120

спин 95, 96, 102, 129

Томсон, Джозеф Джон 38-43, 45, 49-55, 58, 60, 64, 69, 72, 74, 100

Третий рейх 7, 138-141

Уленбек, Джордж 96

Уолтон, Эрнест 128, 131

ускоритель частиц 13, 128, 131, 132

Ферми, Энрико 129, 131, 139-141

физика

квантовая 10, 47, 77, 85, 86, 88, 92, 94, 96, 103, 110, 111, 116, 118, 120

статистическая 37, 89

теоретическая 7, 22-24, 59, 60, 62, 67, 71, 74, 75, 81, 82, 92

фонд

«Карлсберг» 50, 82, 127, 137

«Рокфеллер» 82, 137-139

фотон (квант света) 68, 99, 110, 127

Хевеши, Дьердь де 62, 131, 139

частицы

α 55, 57-62, 89, 116, 121, 122

β 55, 57, 60, 61

Чедвик, Джеймс 120-122, 144

Черчилль, Уинстон 145

Шрёдингер, Эрвин 13, 100-104

Штарк, Йоханнес 64

Штрассман, Фриц 133, 134

Эддингтон, Артур 81

Эйнштейн, Альберт 7-10, 13, 45, 55, 67, 71, 76, 81, 83, 91, 92, 99, 100, 104, 105, 107, 109, 110, 112-115, 119, 127, 134

электрон 7, 9, 13, 15, 19, 23, 24, 33, 37-45, 47, 49, 52-55, 58-60, 62-64, 66-70, 76, 77, 87, 88, 90, 94-98, 100, 101, 107, 112, 113, 115-118, 120-123, 125-130

электронная орбита 84, 94

исчезновение понятия 69, 94, 95

круговая 76, 84, 95

эллиптическая 76, 77

Эллис, Чарльз Драммонд 118, 120

Эренфест, Пауль 84, 119

Эрстед, Ханс Кристиан 17, 20, 45

Юкава, Хидэки 130



Нильс Бор - одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Оглавление

  • Jaume Navarro Наука. Величайшие теории: выпуск 26: Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт.
  • Введение
  • ГЛАВА 1 Бор играет с электронами
  • ГЛАВА 2 Электроны играют с Бором
  • ГЛАВА 3 Катализатор квантового мира
  • ГЛАВА 4 Битва титанов: дебаты Эйнштейн — Бор
  • ГЛАВА 5 Мир во время войны
  • Список рекомендуемой литературы
  • Указатель