Вода и жизнь на Земле [Юрий Владимирович Новиков] (fb2) читать онлайн


 [Настройки текста]  [Cбросить фильтры]
  [Оглавление]

Новиков Ю. В., Сайфутдинов М. М. Вода и жизнь на Земле

АКАДЕМИЯ НАУК СССР

Ответственный редактор доктор геолого-минералогических наук И. С. Зекцер

От авторов

Воду, драгоценный дар природы, академик А. Н. Карпинский назвал живой кровью, которая создает жизнь там, где ее не было. Вода — основа развития земледелия, энергетики и рыбного хозяйства, без нее немыслимы быт и досуг человека.

Но всегда ли мы отдаем себе отчет в том, что значит для нас вода — эта бесцветная, без запаха и вкуса жидкость? В сущности говоря, она почти ничего нам не стоит в повседневной жизни, но бывают моменты, когда за один глоток воды человек готов пожертвовать всем. Человек способен неделями обходиться без пищи, а вот без воды — только два-три дня. И вообще в нормальных условиях воды в свой организм он должен вводить в два раза больше (по весу), чем пищи.

Эта состоящая из водорода и кислорода жидкость нужна не только для поддержания жизни человека. Без нее немыслима практически ни одна сфера производства — вода, например, участвует почти во всех технологических процессах. Незаменима она и в сельском хозяйстве. Для примера отметим, что на выращивание пшеницы только для одной булки необходимы 200 л воды.

Наша планета богата водой — гидросфера Земли составляет приблизительно 1,5 млрд. км3. Но из них более 96 % — горько-соленая вода морей и океанов, покрывающая почти 71 % всей поверхности планеты. На долю пресной воды приходится около 90 млн. км2 (меньше 3 %), причем основной ее запас — это подземные «моря» и ледники. Однако добраться до них не так-то легко.

Ученые подсчитали, что природные льды содержат более 24 млн. км3 воды — объем стока всех рек Земли за период, равный примерно 500 лет. Если попытаться равномерно распределить лед по поверхности Земли, то он покроет ее слоем толщиной в 53 м. Реки, озера и доступные для использования подземные воды составляют всего лишь 0,3 % мировых запасов свободной воды.

В нашей стране насчитывается около 3 млн. рек, ручьев и каналов общей протяженностью приблизительно 10 млн. км. Только речной сток на всей территории СССР, превышает 4,3 тыс. км3 (12 % суммарного мирового стока). В самом глубоком континентальном водоеме на земном шаре — оз. Байкале — находится пятая часть всех мировых запасов поверхностной пресной воды и более 80 % всей пресной воды в СССР.

Охране водных ресурсов как важной составной части социально-экономического развития общества у нас в стране уделяется огромное внимание. Это находит отражение в ряде партийных и правительственных постановлений, документах XXIV, XXV, XXVI съездов партии, в Конституции СССР, в выступлениях руководителей партии и правительства. Выступая в 1979 г. в Днепропетровске, Л. И. Брежнев сказал: «Сохранять в чистоте землю, воздух и воду — задача общегосударственная. Было время, когда старались скорее пустить завод, дать продукцию любой ценой. Сегодня же должны строить так, чтобы щадить природу. Надо также обновить старые предприятия, чтобы и они не наносили урона окружающей среде»[1].

В нашей стране немало сделано для сбережения водных ресурсов. Так, в десятой пятилетке на мероприятия по охране природы, в том числе и водных ресурсов, израсходовано 11 млрд. руб. Действуют и строятся очистные сооружения, совершенствуются технологические процессы, способствующие сокращению отходов, попадающих в реки, улучшается санитарное состояние населенных мест, оздоравливаются сами водоемы. В результате уменьшилось загрязнение многих рек, озер, морей — они стали чище, светлее.

Забота о получении достаточного количества воды, пригодной для питья и удовлетворения культурно-бытовых потребностей населения, волнует человечество на протяжении всего его существования. Достаточно вспомнить, что первый римский водопровод протяженностью 16,5 км был построен в 312 г. до н. э. Характер и формы водоснабжения изменялись с изменением социально-экономических условий, прогрессом техники и естественных наук и общим подъемом культуры.

Давно отмечена связь между заболеваемостью населения и характером водоснабжения. Еще в древнем мире были известны некоторые признаки воды, опасной для здоровья. Однако лишь в середине XIX в. эпидемиологические наблюдения и последующие бактериологические открытия Л. Пастера и Р. Коха позволили установить с достаточной достоверностью, что вода, содержащая патогенные микробы, может способствовать возникновению и распространению заболеваний среди населения. Обращали люди внимание и на химический состав воды как возможную причину заболеваний неинфекционной природы. В настоящее время при обосновании гигиенических нормативов качества питьевой воды проводят ее всесторонние комплексные исследования.

Большое значение в жизни человека имеет Мировой океан. Под влиянием солнечного тепла и при воздействии движения воздушных масс с его поверхности ежедневно испаряется колоссальное количество воды — 0,5 млн. км3. При этом 90 % этой массы вновь в виде осадков возвращается в океан. Остальная вода, выпавшая над сушей, почти вся собираясь в ручейки и реки и также стекает в океан. Часть осадков проникает в почву, образуя почвенную влагу и пополняя запасы подземных вод. Благодаря большой теплоемкости воды и ее постоянному круговороту Мировой океан аккумулирует основное количество тепла, которое Земля получает от Солнца. Вода поглощает тепла на 25–50 % больше, чем суша. Ученые стремятся лучше познать жизнь океана, полнее определить возможности разумного использования его колоссальных богатств, чтобы не нанести непоправимого ущерба этой сложной природной системе.

Деятельность человеческого общества немыслима без воды. Проблема водных ресурсов, их сокращения и увеличения — одна из главных в жизни современного человечества. Без четкого представления о методах рационального использования этих ресурсов невозможно дальнейшее развитие промышленности и сельского хозяйства, прогресс культуры. Цель данной книги — осветить основные аспекты этой проблемы на базе новейшего научного материала.

Гидросфера

Вода и биосфера

Внешняя оболочка Земли занята биосферой. И вполне правильно, когда биосферу называют еще «областью жизни» или «живым покровом» Земли. Это огромное пространство, включающее атмосферу, гидросферу и литосферу, населяют различные виды живых организмов. Верхняя граница биосферы охватывает нижние слои стратосферы до высоты озонового экрана (в среднем до 20 км), в котором задерживается большая часть ультрафиолетовой радиации, губительно действующей на живые организмы. Нижняя граница биосферы определяется на глубине 3–3,5 км ниже поверхности земной коры. Наиболее благоприятные условия для жизни и развития организмов имеются на поверхности суши, в прилегающих к ней слоях атмосферы и в приповерхностных слоях морей и океанов.

Основоположником учения о биосфере является выдающийся русский ученый, академик В. И. Вернадский, который оценил жизнь в общепланетарном масштабе как качественно новое геологическое явление. Центральное место в биосфере занимает «живое вещество», которое, по В. И. Вернадскому, представляет собой совокупность всех живых организмов (животных, растений, микроорганизмов), численно выраженное в их элементарном химическом составе, в весе и энергии. Хотя в количественном отношении живое вещество (по сравнению с неорганическим) занимает незначительное место, оно играет важнейшую роль в формировании биосферы. «На земной поверхности, — писал В. И. Вернадский, — нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом».

Подсчитано, что на Земле обитает около 3 млн. видов живых организмов, из которых 300 тыс. приходятся на долю растений. Однако растения создают 97–98 % всей биомассы суши, остальная часть (1–3 %) животные и микроорганизмы.

Водная среда играла важнейшую роль в возникновении жизни на Земле. В. И. Вернадский писал: «Вода стоит особняком в истории нашей планеты. Нет природного тела, которое могло бы сравниться по влиянию на ход основных, самых грандиозных геологических процессов. Не только земная поверхность, но и глубокие — в масштабе биосферы — части планеты определяются, в самых существенных своих проявлениях, ее существованием и ее свойствами».

Вода является постоянным спутником и необходимым условием воспроизводства живого органического мира. Как известно, в основе образования и накопления первичного живого органического вещества лежит фотосинтез. Под действием солнечной энергии углекислый газ и вода в листьях растений распадаются на кислород, выделяющийся в атмосферу, и углерод, идущий на образование живого органического вещества растений — углеводороды. Только живое вещество, усваивая солнечную энергию, способно строить новые ткани, способно само себя воспроизводить. По подсчетам биологов, живое вещество ежегодна воспроизводит примерно 10 % своей общей массы.

Живые организмы производят огромную работу по перераспределению вещества земной коры и созданию новых химических соединений. Живые организмы вовлекают в процесс круговорота кислорода, углерода и азота также большие массы минеральных веществ и различных других химических элементов, превращая их в биогенное вещество. Живые организмы способны усваивать и концентрировать из среды обитания практически все элементы периодической системы.

Гидросфера (водная оболочка) — это совокупность океанов, морей, озер, рек, ледяных образований, подземных и атмосферных вод. Общая площадь океанов и морей в 2,5 раза превышает территорию суши. Океанические воды покрывают почти три четверти поверхности земного шара слоем толщиной около 4 тыс. м.

Занимая промежуточное положение между атмосферой и литосферой, гидросфера постоянно находится с ними в тесной взаимосвязи. Одним из ее проявлений является влагооборот. Последний играет важную роль в создании условий жизни во всей биосфере.

Таблица 1. Объем гидросферы [М. И. Львович, 1974]

Части гидросферы Объем воды, тыс. км3 От общего объема, %
Мировой океан 1 370 323 93,96
Подземные воды 60 000 4,12
Зоны активного водообмена 4 000 0,27
Ледники 24 000 1,65
Озера 280* 0,019
Почвенная влага 85** 0,006
Пары атмосферы 14 0,001
Речные воды 1,2 0,0001
Итого: 1 454 193 100
* В том числе около 5 тыс. км3 воды в водохранилищах.
** В том числе около 2 тыс. км3 оросительных вод.
По данным табл. 1, на поверхности Земли содержится почти 1,5 млрд. м3 воды, из этого количества 93,96 % сосредоточено в океанах и морях, немногим больше 4 % представляют воды, находящиеся на суше, и 1,65 % воды сковано в ледниках.

Единство вод Земли

Благодаря процессам круговорота воды гидросферы находятся в постоянной взаимосвязи по следующей схеме: океан — атмосфера — суша — океан. Основную роль в механизме круговорота воды играет тепловая энергия и сила тяжести. Под влиянием тепла вода испаряется с поверхностей океанов, морей, озер и других водных объектов; водные пары, сконденсированные в атмосфере, под действием силы тяжести выпадают в виде дождя, снега и града. Таким образом, вода переходит из одного агрегатного состояния в другое и перемещается, образуя течение рек, вызывая движение почвенных и подземных вод.

В замкнутой системе круговорота воды участвуют атмосферное, океаническое, почвенное, речное, озерное, ледниковое, биологическое, хозяйственное звенья. Каждое из них имеет свои особенности. Поверхность океанов, морей, рек и озер подвержена главным образом испарению. Этим обеспечивается пополнение атмосферы влагой, которая в последующем превращается в атмосферные осадки. В круговороте воды участвуют и подземные и почвенные воды в результате их перемещения и испарения. Биологическое звено занимает незначительное место в общем масштабе круговорота воды на Земле. Однако процесс этот сложен и многообразен. Вода для человека, животных и растений — важнейший продукт, участвующий во всех жизненных процессах. В среднем в растениях и животных содержится более 56 % воды. Организм человека почти на 65 % состоит из воды. При этом человеческий организм потребляет воды по весу примерно в 2 раза больше, чем питательных веществ. Вся вода, потребляемая людьми и животными, в конечном итоге также возвращается в общий круговорот воды.

В общем объеме круговорота воды на Земле ведущее место занимает океаническое звено: на суше выпадает только четвертая часть (113,5 тыс. км3) всех осадков, остальные (411,6 тыс. км3) приходятся на долю Мирового океана.

Осадки на поверхности суши создают ресурсы поверхностных вод и являются основным источником формирования пресной воды. Они имеются главным образом в ледниках полярных и горных областей (99,2 %), озерах (0,73 %), болотах (0,05 %) и в руслах рек. Большая часть пресной воды в виде ледников сосредоточена в двух материках — в Гренландии и в Антарктиде. Ледники — большие хранилища пресной воды.

Круговорот воды — это исключительно важное свойство гидросферы. Благодаря ему общее количество воды на Земле не уменьшается и вода делается практически неисчерпаемой. В этом заключается существенное отличие водных ресурсов от других полезных ископаемых. Подсчитано, что пары атмосферы обновляются в среднем каждые 10 суток, речные воды в руслах рек — в среднем каждые 11 суток, почвенная влага и воды-верховодки Земли возобновляются ежегодно. Более медленно происходит водообновление подземных вод, а также вод в озерах, болотах и ледниках.

Поверхностные воды

В процессе возобновления запасов пресных вод основную роль играют атмосферные осадки. Известно, что на поверхность нашей планеты в среднем в год выпадают осадки, равные метровому слою. Однако распределяются они по земной поверхности неравномерно. Существуют районы с очень высоким уровнем осадков. Наибольшее количество их приходится на тропические зоны экватора (в пределах от 10° с. ш. до 10° ю. ш.). На территории некоторых районов Индии количество выпадающих осадков в год превышает 12 м.

Таблица 2. Обеспеченность континентов речной водой [К. П. Воскресенский, 1971]

Континент Суммарный сток рек, км3 Население, млн. человек Сток на душу населения, тыс. м3 в год
Европа 3 140 606 5,18
Азия 13 400 1 688 7,94
Африка 4 020 294 13,67
Северная Америка 6 522 253 26,17
Южная Америка 11 500 154 74,68
Австралия 1 890 15,5 12,9
Земной шар 41 500 3 256 11,0
Вместе с тем в некоторых районах экваториальной зоны выпадаемой влаги недостаточно даже для смачивания поверхности почвы. Например, Синайская пустыня, где годовое количество осадков составляет всего 10–15 мм, а в Перуанской и Ливийской пустынях осадков не бывает вообще. Пустыни занимают четверть земной поверхности, а осадки, выпадающие в этих районах, в среднем не превышают 200 мм в год.

Неравномерность осадков наблюдается и в течение года. Так, в экваториальных районах наибольшее количество осадков выпадает в период после осеннего и весеннего равно действия; в тропиках и муссонных областях — главным образом летом, а в субтропиках — зимой; в районах с континентальным климатом — опять летом. В это время здесь отмечается до двух третей годовой нормы осадков.

На количество осадков, выпадающих на поверхность Земли, значительное влияние оказывает температура и близость больших водных пространств. В теплых экваториальных районах в результате интенсивного испарения увеличивается влагоемкость воздуха и соответственно возрастает количество осадков. В Южном полушарии, где большие пространства заняты морями и океанами, осадков больше, чем в северных широтах Земли.

Возобновляемые в процессе круговорота пресные воды используются для питьевого и промышленного водоснабжения, орошения и выращивания растительной массы, выработки гидроэнергии, судоходства и т. д. Однако не следует забывать, что неправильная хозяйственная деятельность человека ведет к качественному и количественному истощению водных ресурсов.

Изучение закономерностей водообмена в реках, почве и других звеньях гидросферы суши имеет огромное хозяйственное значение. Полученные данные служат основой при планировании использования речного стока населением, дальнейшего развития промышленности и сельского хозяйства.

Особое место в жизни человека занимают речные и озерные воды. В настоящее время в мире известны 145 больших озер, в которых содержится 95 % объема озерных вод. Наибольшее количество пресной воды сосредоточено в оз. Байкале (2,3 тыс. км3) и Великих Американских озерах (2,4 тыс. км3).

Характеризуя обеспеченность речной водой населения мира, необходимо отметить, что в целом на одного человека приходится 11 тыс. м3 в год. Наибольшее количество речной воды на душу населения зафиксировано в Южной и Северной Америке, затем в Африке и Австралии (см. табл. 2).

Ряд стран — таких, как Бразилия, СССР, КНР, Канада, Индия, США, — обладают крупными речными ресурсами. На их долю приходится более 50 % всего речного стока мира (табл. 3).

Большое количество речной воды ежегодно стекает в океаны — Атлантический, Северный Ледовитый, Тихий и Индийский, и только некоторая часть ее остается в так называемых «бессточных областях», сток из которых не достигает Мирового океана. Среди крупных рек земного шара следует назвать реки, стекающие в Атлантический океан на территории Северной и Южной Америки: Амазонка (6930 км3/год), Парана (599 км3/год), Ориноко (441 км3/год), Миссисипи (599 км3/год), на территории Африки — Конго (1350 км3/год), в Индийский океан впадают Ганг (1200 км3/год) и Брахмапутра (630 км3/год); в Тихий океан — Амур (350 км3/год), Янцзы (693 км3/год) и Меконг (378 км3/год), в Северный Ледовитый океан — Енисей (624 км3/год), Лена (536 км3/год) и Обь (400 км3/год).

Таблица 3. Водообеспеченность по отдельным странам мира [М. И. Львович, 1974]

Страна Территория, тыс. км2 Среднемноголетний сток рек, км3 Удельная водность на одного жителя, тыс. м3/год
Земной шар (в целом) 148 818 41 500 11,0
В том числе:
    Бразилия 8 510 5 668 59,5
    СССР 22 275 4 384 17,5
    КНР 9 600 2 880 3,79
    Канада 8 700 2 740 128,0
    США 9 400 2 345 11,4
    Индия 3 270 1 586 2,88
Как правило, водность в озерах и речных бассейнах меняется из года в год. Это связано с общими климатическими и метеорологическими условиями той или иной части суши и особенностями отдельных годов.

Реки и озера питаются от дождей, в результате таяния снега и ледников и от подземных источников. Наблюдаются годы маловодные и многоводные. Изменение водности происходит и внутри года. В периоды весеннего половодья и паводков в результате интенсивного таяния снега водность многих равнинных рек повышается, и наоборот, она резко падает летом и зимой. В период весеннего половодья расход отдельных рек составляет 60 % и более (от годового).

Большая часть бассейна р. Амазонки находится в пределах экваториального пояса Южной Америки. В этой части континента в течение года выпадают осадки, превышающие 2000 мм. Высокий сток характерен и для рек, расположенных в экваториальной зоне Африки (Юго-Западная и Юго-Восточная часть), где выпадает более 1000 мм осадков. Для районов действия муссонов Индийского и Тихого океанов характерны также обильные летние осадки, достигающие 5000 мм и более, в связи с этим здесь резко увеличивается речной сток. И наоборот, в сезон, когда дуют ветры с суши на море, палящее солнце в этих районах вызывает сильнейшую засуху, превращая почву в пыль и песок.

Большое влияние на водность рек оказывает рельеф местности. Высокие хребты Кордильеров и Анд преграждают путь увлажненным восточным ветрам с просторов Атлантического океана и бассейна Амазонки. В результате в пустыне Атакама несколько лет подряд не бывает дождя. Чрезвычайно многоводны реки, берущие начало в Гималаях. В период таяния здесь снега реки в Индии, Пакистане и Бангладеш разливаются катастрофически.

Подсчитано, что на нашей планете болота занимают более 3,5 млн. км2. До недавнего времени многие считали болота «болезненными лишаями» земной поверхности, выпадающими из хозяйственного оборота. Сейчас взгляды на роль болот изменились. Участки сильного увлажнения играют, оказывается, роль губки, которые впитывают воду, когда ее избыток, и отдают, когда ее мало. Болота являются хранилищами громадного количества пресной воды, питающей ручьи и пруды. Более того, они служат своеобразным естественным фильтром при очистке загрязненных вод. Из районов, заполненных мутной жижей, вода выходит чистой.

За сравнительно короткий период с лица планеты исчезла почти треть болот. В Западной Европе и Америке спохватились, когда после уничтожения болот катастрофически стали мелеть реки, гибнуть флора и фауна, а на осушенных землях через несколько лет резко упали урожаи и началась ветровая эрозия.

В 1967 г. 18 стран, в их числе и СССР, образовали международное общество «Телма», что в переводе с греческого означает «болото». Его цель — сохранить для человечества этот важный естественный запасник пресной воды.

Подземные воды

Еще один участник круговорота воды в природе — подземные воды, как уже отмечалось, играют важную роль и как источник водоснабжения населения. Их запасы в недрах Земли огромны. Подземные моря имеются на всех материках, причем даже в пустынях. В самой большой безжизненной пустыне — Сахаре — подземные воды обнаружены в 150–200 м от поверхности земли. Верхняя граница подземного моря на территории Каракумов проходит на глубине 30 м.

Подземные воды возникли наряду с образованием твердой, воздушной и водной оболочек Земли. Атмосферные воды, выпадающие на поверхность Земли, постепенно просачиваются через толщу почв и пород, добираясь до водоупорного слоя глин, структуру которых можно сравнить с пластинками слюды или чешуйками рыб. Насыщенные водой подземные пласты получили название водоносных. Как правило, они находятся в зажатом состоянии между водоупорными глинами. Вследствие этого подземные воды приобретают напор и могут выливаться на поверхность в виде фонтана. Водоносных горизонтов и водоупоров может быть множество. Нередко они образуют целые бассейны подземных вод.

Запасы подземных вод принято условно делить на естественные ресурсы, которые ежегодно возобновляются, и статические (емкостные) запасы, которые накапливаются веками. Естественные ресурсы зоны активного водообмена дренируются и создают устойчивую часть речного стока.

Для деятельности человека (особенно для хозяйственно-питьевого использования) наибольший интерес представляют самые верхние водоносные горизонты. Преимущество подземных вод по сравнению с поверхностными водами рек, озер и других источников огромны: они достаточно защищены от поступления загрязнений с поверхности, имеют постоянный состав и температуру, распространены более равномерно.

В настоящее время подземные воды получают все большее применение в промышленности и в сельском хозяйстве. Так, в США на долю подземных вод приходится около 20 % всей потребляемой воды, в ФРГ и Нидерландах — 75, в Бельгии — 90, в Дании — около 100 %.

Как уже отмечалось, водные ресурсы на Земле распределены неравномерно. В первую очередь это касается запасов пресных вод, пригодных для человека. Острый недостаток в пресной воде испытывают огромные районы Африки, Ближнего и Среднего Востока, Южной и Северной Америки, Австралии. Почти треть населения земного шара живет в условиях дефицита пресной воды. Сюда относятся такие высокоразвитые в промышленном отношении страны, как США, ФРГ, Нидерланды, Япония. Несмотря на значительный объем речного стока на территории Индии и Китая, водообеспеченность населения этих стран значительно ниже, чем во многих других.

Таблица 4. Сравнительная балансовая оценка водных ресурсов СССР и земного шара [М. И. Львович, 1974]

Источник водных ресурсов (элементы баланса) СССР Вся суша* СССР, % от всей суши
км3 мм км3 мм по объему по слою
Осадки 10 860 500 110 305 834 9,8 60
Полный речной сток 4 350** 198 38 830 294 11,2 67
Подземный (устойчивый) сток 1 020*** 46 11 885*** 90 8,6 51
Поверхностный (повадочный) сток 3 330 152 26 945 204 12,4 75
Валовое увлажнение территории 7 630 348 83 360 630 9,2 57
Испарение 6 610 302 71 475 540 9,3 56
* Без Гренландии (с Канадским архипелагом) и Антарктиды.
** Не считая около 300 км3, формирующихся на частях речных бассейнов, расположенных за рубежом.
*** Вместе со стоком, зарегулированным озерами и водохранилищами, в СССР 1,3 тыс. км3, на суше 14,01 тыс. км3.
Человечество пока не владеет эффективными средствами управления количеством осадков, выпадаемых на поверхность суши. Однако в настоящее время делается многое в отношении регулирования водных ресурсов по территории. С этой целью создаются водохранилища для накопления воды; с помощью обводнительных и оросительных каналов она подводится туда, где ее не хватает; повсеместно сооружаются многочисленные артезианские скважины для подъема подземных вод; проводятся различные мероприятия, направленные на равномерное и рациональное использование водных ресурсов.

Водные ресурсы СССР

Наша страна занимает 15 % всей земной суши и не удивительно, что по величине водных ресурсов СССР стоит на ведущем месте в мире. Пресные воды сосредоточены у нас в реках, озерах, ледниках и в подземных хранилищах на разных глубинах от поверхности земли. Правда, при сравнительной оценке баланса водных ресурсов СССР и всего земного шара можно отметить, что в нашей стране осадков выпадает меньше (табл. 4).

Как известно, увлажнение является основным фактором плодородия земли. По естественному увлажнению территория нашей страны делится на три зоны.

Зона избыточного увлажнения. Это преимущественно северные области страны. Осадков здесь выпадает больше, чем испаряется влаги с поверхности почвы (600–700 мм/год). Такие районы нуждаются в осушении.

Зона достаточного увлажнения. Это лесостепные районы. Здесь испарение в среднем не превышает величины выпадающих осадков (500–600 мм/год).

Зона неустойчивого увлажнения. Сюда относятся южные районы страны. Испарение с поверхности почвы значительно большее, чем количество поступающих осадков (300–500 мм/год). В зонах с неустойчивым увлажнением расположено около 65 % земледельческой территории. Наиболее продуктивные площади расположены в Средней Азии, Закавказье, на юге РСФСР, Украины и Молдавии.

Поверхностные воды. По суммарной величине поверхностного стока Советский Союз занимает второе место в мире. В средний по водности год общая величина наших водных ресурсов составляет 4,714 тыс. км3, из которых 4,384 тыс. км3 формируется на территории СССР и 330 км3 притекает из зарубежных стран.

Крупные запасы пресной воды сосредоточены, как уже отмечалось, в болотах, которые занимают около 50–70 % территории Западной Сибири и 40 % северо-западных районов Европейского Севера. Подсчеты показывают, что общее количество вод в болотах равно примерно 3 тыс. км3, из них почти 1000 км3 приходится на болота Западной Сибири.

В маловодных районах страны частично сохраняется около 300 болот. Они — эталоны нетронутой природы.

В 1980 г. занесены в списки государственных заповедников республиканского значения 35 крупных болотных массивов УССР. Известно, что болота играют важную роль в стабилизации климата и регуляции гидрологического режима регионов. Взятые под охрану государства топи являются естественным аккумулятором влаги. Они регулируют водный режим множества карстовых озер, в том числе красивейшего глубокого оз. Святязь, которое называют Байкалом Украины. Отныне здесь запрещены строительные и мелиоративные работы, добыча торфа, сенокос, выпас скота. В этом естественном музее болотной флоры сохраняются многие реликтовые представители растительного мира.

Общая площадь заповедных болотных массивов превысила 150 тыс. га.

Единовременные запасы воды в руслах рек СССР оцениваются в 475 км3.

Одна из характерных особенностей водных ресурсов нашей страны — это неравномерное распределение их по территории. Как показывает табл. 5, наиболее водообеспечены северо-западные, северные и восточные районы. Они экономически менее развиты и менее населены. Эти районы, занимающие около половины территории страны, обеспечены водой более чем на 80 %. Значительно меньше (около 20 %) водообеспеченность территории Европейской части и Средней Азии, хотя в этих районах проживает более 70 % населения и сконцентрированы главные промышленные и сельскохозяйственные базы страны.

Среди союзных республик (табл. 6), наибольшими водными ресурсами обладает РСФСР. На ее территории формируется 4,021 тыс. км3 воды в средний по водности год. Однако распределены водные ресурсы здесь также неравномерно. Богатыми водными ресурсами располагают районы Дальнего Востока, Восточной и Западной Сибири, Европейский Север, менее водообеспечены Центрально-черноземные и Волго-Вятские районы. Центрально-Черноземный район занимает водораздельные территории Средне-Русской возвышенности, и поэтому его водные ресурсы основаны на местном стоке и здесь очень мало транзитного стока. Наименьший объем водных ресурсов формируется на территории Северного Кавказа и Поволжья.

Значительные водные ресурсы приходятся па территории Грузинской, Киргизской, Таджикской, Белорусской, Литовской, Латвийской и Эстонской союзных республик. Наименьшую водообеспеченность имеют Туркменская, Молдавская, Узбекская и Украинская союзные республики.

Неравномерно распределены водные ресурсы Казахстана. Крупные реки протекают по окраинам республики. Наиболее богаты ими высокогорные области, равнинные территории отличаются редкой речной сетью. Большинство рек Казахстана — временные, несущие воду лишь в весеннее время. На больших просторах здешних пустынь местные реки отсутствуют. Подземные воды большей частью сосредоточены на юге республики.

Таблица 5. Водные ресурсы экономических районов СССР

Экономический район Территория, тыс. км2 Воды местного стока, км3 Воды притока, км3 Общие ресурсы, км3 Воды оттока, км3
всего из-за границы всего за границу
Прибалтика и Белоруссия 396,7 87 26,6 1,6 110 110 3,17
Европейский Север 1 926,1 601 134 28,4 735 735
Центральный Юго-Запад 652,9 111 27,1 138 138
ЕТС 634 50,2 158 123 208 208 8,4
Северный Кавказ 355,1 43,7 26,7 70,4 69,8
Закавказье 186,1 67,8 12,7 12,1 79,9 78,0
Урал 680,4 102 12,9 115 114
Поволжье 680,1 68,3 224 292 290
Казахстан 2 717,3 53,5 59,5 24,0 113 72,3 0,29
Средняя Азия 1 277,1 113 18,1 18,1 131 70,2 5,95
Западная Сибирь 2 427,2 482 72,2 554 553
Восточная Сибирь 4 122,8 1 070 38,5 34,8 1 109 1 107 2,98
Дальний Восток 6 215,9 1 539 282 90,6 1 820 1 820
Таблица 6. Водные ресурсы союзных республик* (В. И. Бабкин, К. П. Воскресенский, 1976)

Союзные республики Территория, тыс. км2 Воды местного стока, км3 Воды притока, км3 Общие ресурсы, км3 Воды оттока, км3
всего из-за границы всего за границу
РСФСР 17 075,4 4 021 221 156,0 4 242 4 241 3,0
Украинская 603,7 49,4 161 123 210 210 8,4
Белорусская 207,6 37,6 21,6 59,2 59,2 3,17
Узбекская 447,4 12,2 92,4 104,6 63,6
Казахская 2717,3 53,5 59,5 24,0 113 72,3** 0,29
Киргизская 198,5 48,7 0,37 49,1 35,7 5,95
Таджикская 143,1 52,2 34,3 15,2 86,5 85,4
Туркменская 488,1 0,23 67,8 2,8 68,0 60,0
Молдавская 33,7 0,81 10,6 0,28 11,4 11,4
Латвийская 63,7 16,6 17,9 34,5 34,3
Литовская 65,2 14,6 10,6 25,2 25,2
Эстонская 45,1 11,9 4,8 16,7 16,7
Грузинская 69,7 52,6 9,8 8,8 62,4 62,4
Армянская 29,8 7,2 2,2 2,2 9,4 8,6
Азербайджанская 86,6 8,0 22,3 1,1 30,3 30,3
Всего 22 274,6 4 386 333 333 4 720 4 563 *** 20,8
* Приведены округленные величины.
** В том числе в крупные бессточные водоемы: оз. Балхаш, Аральское море.
*** Без учета потерь стока в бессточные водоемы.
Таблица 7. Удельные показатели водных ресурсов рек союзных республик (В. И. Бабкин, К. П. Воскресенский (1976))

Союзная республика Территория, км2 Коэффициент местного стока Коэффициент испарения Водные ресурсы, тыс. м3/год
на 1 км2 площади на 1 человека
местный сток общие ресурсы местный сток общие ресурсы
РСФСР 17 075,4 0,43 0,57 236 248 30,3 31,9
Украинская 603,7 0,13 0,87 82,2 351 1,02 4,34
Белорусская 207,6 0,24 0,76 181 285 4,06 6,34
Узбекская 447,4 0,17 0,83 27,3 233 0,92 7,87
Казахская 2717,3 0,07 0,93 19,7 41,7 3,84 8,11
Киргизская 198,5 0,63 0,37 245 248 15,2 15,3
Таджикская 143,1 0,75 0,25 365 604 15,9 26,4
Туркменская 488,1 0,003 0,997 4,17 139 0,10 28,0
Молдавская 33,7 0,04 0,96 24,0 339 0,22 3,03
Латвийская 63,7 0,34 0,66 261 542 6,76 14,1
Литовская 65,2 0,30 0,70 224 387 4,49 7,72
Эстонская 45,1 0,36 0,64 264 372 8,41 11,8
Грузинская 69,7 0,56 0,44 755 894 10,8 12,8
Армянская 29,8 0,42 0,58 242 315 2,64 3,44
Азербайджанская 86,8 0,21 0,79 92,4 350 1,45 5,49
Всего 22 274,6 0,39 0,61 197 212 17,5 18,8
Неравномерность проявляется и в обеспечении водой населения союзных республик. Наибольшую водообеспеченность на одного человека имеют РСФСР, Туркменская, Таджикская и Киргизская союзные республики (31,9—15,3 тыс. м3/год), а наименьшую — Молдавская, Армянская, Украинская союзные республики (3,03—4,34 тыс. м3/год) (табл. 7).

На территории нашей страны протекает около 3 млн. рек и речек. И неудивительно, что реки играют главную роль в водном хозяйстве страны. Они — основной источник водоснабжения населения, а также промышленности и сельского хозяйства.

Реки СССР в основном принадлежат к бассейнам трех океанов. Крупнейшие реки, составляющие около 80 % речного стока, — Обь, Енисей, Лена, Северная Двина, Печора — впадают в Северный Ледовитый океан; р. Амур — в Тихий океан; р. Нева — в Балтийское море; р. Днепр — в Черное море. Около 10 % всего речного стока приходится на замкнутые бассейны внутренних морей и озер — Каспийского, Аральского, Азовского и оз. Балхаш. К ним относятся р. Волга — главная водная артерия большей части территории Европейской части страны, а также Дон, Кубань и Терек — на Северном Кавказе, Амударья и Сырдарья — в Средней Азии.

Реки, расположенные на большей части территории страны, получают снеговое питание, благодаря чему наиболее высокий сток здесь наблюдается в период весеннего половодья. За 1–3 месяца по этим рекам стекает почти 50–60 % годового стока. К рекам такого типа относятся Волга, Дон и другие реки, протекающие главным образом в Европейской части. Для рек дождевого питания (в основном в Закавказье и в бассейне р. Амура) характерен осенний паводок. Реки Кавказа и Средней Азии, получающие снеговое и ледниковое питание, в течение лета имеют два паводка: в период таяния снега и в период таяния ледников. Основным источником питания рек в межпаводковый период (главным образом зимой) и создания устойчивого их стока являются грунтовые воды. Это большое подспорье для речного стока, ведь зимой в северных районах страны и в Восточной Сибири некоторые реки полностью промерзают, подобно тому как полностью пересыхают многие реки в Средней Азии, в Заволжье и Казахстане.

Таблица 8. Количество и площадь озер в СССР

Площадь, км2 Количество Суммарная площадь
км2 от всей площади озер
Менее 1 2 811 830 159 225 32,8
1-10 36 680 86 470 17,7
11-50 2 145 39 967 8,2
51—100 228 15 558 3,2
101—1000 154 41 155 8,5
Более 1000 27 143 625 29,6
Всего 2 851 044 486 000 100,0
Большое место в водном хозяйстве СССР занимают озера (табл. 8). Наибольшее их количество приходится на северо-запад Европейской части страны, Западную Сибирь и Северный Казахстан. Вековые запасы озерных вод сосредоточены в крупных озерах — таких, как Байкал, Иссык-Куль, Ладожское, Балхаш, Ильмень, Севан и др., общим объемом свыше 26 тыс. км3. В самом глубоком озере мира — Байкале (1,741 тыс. м) — содержится 2,3 тыс. км3 воды. Озера небольших размеров и с малыми глубинами, располагающиеся на территории Казахстана, пересыхают, к осени превращаясь в солончаки.

Большие запасы пресной воды создаются с помощью водохранилищ. Они в основном используются для получения электроэнергии, орошения, а также при снабжении водой населения и в промышленности. Водохранилища увеличивают гарантированный сток рек на 20–25 %. Сейчас в нашей стране действуют около 150 крупных водохранилищ объемом свыше 100 млн. м3 и более каждое. Например, Куйбышевское водохранилище, являющееся наиболее мощной ступенью Волжско-Камского гидротехнического каскада и одним из крупнейших водохранилищ страны. Площадь его водной поверхности составляет 6,448 тыс. км2, емкость — 58 км3. Внушительны размеры Братского водохранилища (на р. Ангаре): площадь зеркала — 5,5 тыс. км2, емкость — 179 км3 и Красноярского (на р. Енисей): площадь зеркала — 2,13 тыс. км2, емкость — 77,5 км3.

Подземные воды. Значительную часть водных ресурсов СССР составляют подземные воды. По подсчетам специалистов, объем подземных вод, пригодных для хозяйственно-питьевых целей, равен примерно 310 км3/год.

Подземные воды на территории нашей страны также распределены неравномерно. Воды, пригодные для питья и технических целей, наиболее часто встречаются в западных и юго-западных районах и реже на Северном Кавказе, в Казахстане, на юге Украины и в Средней Азии. Воды с повышенной минерализацией распространены преимущественно на юге страны — в Молдавии, Средней Азии, на юге Западной Сибири и в Казахстане. Характерно, что естественные ресурсы подземной воды постепенно уменьшаются по мере продвижения из северо-западных районов в юго-восточные (от 2–3 до 0,5 л/с с 1 км2).

На территории Европейской части РСФСР сосредоточены многие артезианские бассейны — такие, как Ленинградский, Московский, Северо-Двинский, Прибалтийский, Волго-Камский и др. На подземных водах основано хозяйственно-питьевое водоснабжение в центральных и западных районах РСФСР. Наиболее крупными водопотребителями являются Москва и ряд областных центров (Тула, Рязань, Орел и др.). Меньше потребляют подземную воду население Поволжья, Урала, Сибири и Дальнего Востока. Наоборот, в Белоруссии для хозяйственно-питьевых целей преимущественно используют подземные воды. Неравномерно распределены эксплуатационные подземные воды на территории Украинской ССР. Их в основном получает население крупных городов республики — Киева, Харькова, Полтавы, Ворошиловграда и др. В Среднеазиатских республиках и Казахстане подземная вода, пригодная для питья, сосредоточена в основном в межгорных и предгорных бассейнах. В Закавказье подземными водами богаты территории речных долин и предгорья. Достаточно хорошо обеспечены такими водами Прибалтийские республики.

За последние годы все большее значение приобретают термальные воды. Их запасы имеются на Камчатке, Курильских островах, Сахалине, Кавказе, в Западной Сибири и других районах нашей страны.

В СССР находится самое крупное в мире подземное хранилище воды, Это — Западно-Сибирский артезианский бассейн, площадь которого достигает 3 млн. км2, что почти в 8 раз превышает площадь Балтийского моря. Расположенные над ним (в нижней части бассейна) сухие Кулундийские степи вскоре получат живительную влагу.

Ученые установили, что под сухими степями и пустынями Казахстана находятся целые озера пресной воды, общий объем которых превышает объем оз. Балхаш или Азовского моря. Глубина их залегания — от 50 до 1 тыс. м. Это настоящий подземный клад. За последние годы подземные пресные воды в Казахстане найдены на площади свыше 20 млн. га. В дальнейшем их планируют искать на небывало большой площади — 50 млн. га.

За последние пять лет открыто свыше 20 крупных месторождений пресных подземных вод в Каракумах, призванных сыграть большую роль в водоснабжении городов и поселков Туркмении. Подземные водоисточники в состоянии давать более 400 тыс. м3 пресной воды. Сейчас на базе разведанных ресурсов уже вступили в строй несколько крупных водозаборов и половина населения Туркмении пользуется пресной водой высокого качества из подземных источников.

Говоря о подземных водах, нельзя не упомянуть о ресурсах солоноватых и соленых подземных вод. К ним относятся воды с общей минерализацией от 1 до 35 г/л. Химический состав таких вод различен. Чаще всего встречаются хлоридные, сульфатные, сульфатно-хлоридные, гидрокарбонато-хлоридные и пр. В масштабе земного шара запасы солоноватых и соленых вод оцениваются до 5 млн. км3. Особенно много их в нашей стране. Как показывают исследования специалистов Института водных проблем АН СССР, «Всегингео» и др., на территории СССР имеется приблизительно 464 тыс. км3 таких вод, из них около 52 тыс. км3 — слабо солоноватые, имеющие минерализацию от 1 до 3 г/л, около 115 тыс. км3 — средние и сильно солоноватые с минерализацией от 3 до 10 г/л и 297 тыс. км3 — соленые с минерализацией от 10 до 35 г/л.

На обширных пространствах нашей страны солоноватые и соленые подземные воды распространены повсеместно. Их водоносные горизонты встречаются на различных глубинах от поверхности Земли и нередко достигают 500 и более метров.

Глубина залегания солоноватых и соленых подземных вод закономерно связана с климатическими условиями, рельефом местности, распределением поверхностных вод, геологическим строением районов.

Солоноватые и соленые подземные воды, которые залегают первыми от поверхности Земли, больше распространены в южных районах нашей страны: в артезианских бассейнах Причерноморско-Предкавказской области, на юге Молдавии и Украины, в Предкавказье, в Прикаспийском артезианском бассейне, на юге Западно-Сибирской артезианской области, в Тургайском, Сырдарьинском, Амударьинском и других артезианских бассейнах па территории Казахстана и Средней Азии. Однако известны отдельные районы Севера (в пределах Московского, Северодвинского, Тунгузского, Якутского артезианских бассейнов), где солоноватые и соленые подземные воды также залегают первыми от поверхности. Во многих районах встречается чередование пресных и минерализованных подземных вод. На больших пространствах севера и северо-востока Сибири подземные воды повышенной минерализации расположены непосредственно под толщей многолетнемерзлотных пород.

Некоторые солоноватые и соленые подземные воды обладают лечебными свойствами. Из таких месторождений лечебных минеральных вод большое значение имеют подземные воды в межгорных артезианских бассейнах: Куринский на Кавказе, Южно-Каспийский, Танизский и др. Отметим, что все они залегают первыми от поверхности земли.

Недра Белоруссии богаты запасами минеральной воды, обладающей лечебными свойствами. Здесь в древние геологические эпохи простиралось море и осадочные породы создавали необходимые условия для минерализации глубинных вод. Наибольшей концентрацией минеральных солей отличается подземная вода в Припятской впадине. Эта территория, ограниченная двумя разломами земной коры — северным и южным, на двухкилометровой глубине накопила огромное количество густого целебного раствора, содержащего в 1 л до 430 г различных солей. В северо-восточной части Белоруссии также имеются минеральные воды, но они засолены слабее: в 1 л содержится 150 г минеральных веществ. В районе поселка Видзы (Гродненская обл.) и в других местах обнаружены запасы сероводородной и радоновой воды.

В Белоруссии пробурено около 40 «целебных» скважин. Шесть из них обслуживают профсоюзные санатории, остальные предназначены для санаториев, профилакториев и пансионатов различных предприятий. Свои минеральные источники имеют базы здоровья колхоза «Рассвет» им. Орловского, Гомельского отделения Белорусской железной дороги, Могилевского производственного объединения «Химическое волокно» им. В. И. Ленина и др. В последние годы в связи с увеличением фондов на социально-культурные нужды темпы бурения «скважин здоровья» постоянно растут.

Таблица 9. Распространение ресурсов термальных вод на территории СССР (М. М. Дворов, 1978)

Район Температура — 40—200 °C, минерализация — до 35 г/л Температура — 50—200 °C, минерализация — до 10 г/л
Дебит, млн. м3/сут Дебит, млн. м3/год Экономия топлива и тепла в год, млн. т усл. топ. / млн. Гкал Дебит, млн. м3/сут Дебит, млн. м3/год Экономия топлива и тепла в год, млн. т усл. топ. / млн. Гкал
Европейская часть СССР 3,02 1 102,30 7,80 / 39,0 1,21 443 3,08 / 15,40
Кавказ и Предкавказье 1,95 711,75 5,00 / 25,00 0,78 280 1,95 / 9,80
Крым и Предкарпатье 0,57 208,05 1,50 / 7,50 0,23 90 0,62 / 3,10
Другие районы Европейской части СССР 0,50 182,50 1,30 / 6,50 0,20 73 0,51 / 2,50
Средняя Азия 1,43 521,95 3,50 / 17,50 0,55 200 1,40 / 7,00
Казахстан 1,20 438,00 3,00 / 15,00 0,48 175 1,20 / 6,00
Западная Сибирь 10,75 3 923,75 8,50 / 42,50 1,36 492 3,42 / 17,00
Таблица 9 (окончание). Распространение ресурсов термальных вод на территории СССР (М. М. Дворов, 1976)

Район Температура — 40—200 °C, минерализация до — 35 г/л Температура — 50—200 °C, минерализация — до 10 г/л
Дебит, млн. м3/сут Дебит, млн. м3/год Экономия топлива и тепла в год, млн. т усл. топ. / млн. Гкал Дебит, млн. м3/сут Дебит, млн. м3/год Экономия топлива и тепла в год, млн. т усл. топ. / млн. Гкал
Восточная Сибирь и Дальний Восток 3,35 1 222,75 8,50 / 42,50 1,36 492 3,42 / 17,00
Юг Восточной Сибири; Северо-Восток; Якутия, Магаданская область (с Чукотским Национальным Округом); Хабаровский край; о-в Сахалин 1,65 602,25 4,20 / 21,00 0,66 240 1,67 / 8,30
Камчатка и Курильские о-ва* 1,70 620,50 4,30 / 21,50 0,70 252 1,75 / 8,70
Всего: 19,75 7 208,75 50,0 / 250,00 7,90 2880 20,00 / 100,40
* В отличие от остальных районов страны Камчатка и Курильские о-ва находятся в зоне современного вулканизма, где термальные воды на ограниченных участках и небольших глубинах имеют температуры 80—200 °C и выше.
Поистине уникальны целебные ресурсы Забайкалья. Каждую минуту из глубин поднимается по скважинам свыше 20 тыс. л отличной минеральной воды. На территории Читинской области насчитывается свыше 3 тыс. минеральных источников. Только при Советской власти водные запасы этого края нашли научное применение. Специалисты дали глубоко обоснованные рекомендации для бальнеологических процедур. На забайкальских водах выросли популярные курорты Дарасун, Кука, Молоковка, Шиванда, Ямаровка и другие с нарзанными и радоновыми источниками.

Дарасун — самый популярный курорт Восточной Сибири. Его образно называют забайкальским Кисловодском. И это не случайно: местные минеральные источники по количеству содержания в них углекислоты во много раз превосходят знаменитый кисловодский нарзан. Окружающие здравницу горные массивы обильно поросли березняком вперемежку с сосной и лиственницей, луга покрыты пышным разнотравьем. Чистый воздух, обилие ягод, чарующая красота гор, аромат цветов, ценнейшие минеральные источники создают благоприятные условия для отдыха и лечения многих недугов. К живительным источникам Дарасуиа приезжают на лечение жители Урала и Сибири, Средней Азии и Казахстана, Алтая и Дальнего Востока. Значительная часть лечебной продукции отправляется за пределы курорта.

Термальные подземные воды. Прогнозные запасы термальных вод на территории СССР выражаются внушительной цифрой — 19,75 млн. м3/сут (или 231,5 м3/с).

О их региональном распределении свидетельствует табл. 9. Правда, в ней представлены ориентировочные данные. Дальнейшее изучение и разведка термальных вод могут увеличить их общий дебит в несколько раз. Многообещающие перспективы вскрытия высокотемпературных источников тепла открываются с развитием глубокого бурения на 10–15 км. На таких глубинах в некоторых районах страны (особенно вулканических) температура вод может достигнуть 350 °C и выше.

Богаты термальными водами республики Средней Азии. Однако используются они пока лишь в бальнеологии и частично для получения йода и брома. Огромное количество горячих вод обнаружено в Казахстане. Только в районе Алма-Аты выявлен большой артезианский бассейн с температурой воды от 80 до 120 °C и избыточным давлением у поверхности земли до 30–35 атм.

Больше половины всех выявленных термальных вод страны приходится на Западную Сибирь. В Восточной Сибири и на Дальнем Востоке многие месторождения термальных вод расположены в районах, где тепловые ресурсы ценятся, что называется, на вес золота.

Особо следует сказать о Камчатке. Здесь нет своего угля, нефти и газа, но этот суровый край природа наделила подземным теплом. «Котельные» полуострова — многочисленные вулканы. Ученые Института вулканологии Дальневосточного научного центра АН СССР совместно с камчатскими геологами установили, что на глубине 1 км от дневной поверхности температура паро-водяной смеси достигает 200–250 °C. Запасы тепловой энергии тут могут обеспечить работу достаточно мощных геотермальных электростанций.

На Камчатке накоплен некоторый опыт использования природного тепла для получения электрической энергии. Уже более десяти лет здесь работает Паужетская геотермальная электростанция мощностью 5 тыс. кВт, доказывая надежность и простоту тепловой схемы. Все технологические процессы на станции полностью автоматизированы. Специалисты считают, что широкое освоение геотермальных районов Камчатки позволит к 1985 г. возвести электростанции, работающие на подземном тепле и дающие 300 тыс. кВт самой дешевой электроэнергии. При этом отпадает необходимость в ежегодном завозе 1 млн. т угля.

Огурцы, помидоры и другие овощи в открытом грунте на Камчатке не произрастают, их сюда завозят. В пригороде Петропавловска-Камчатского построен тепличный комбинат площадью 6 га, отапливаемый термальными водами.

Подземные «термальные моря» используются для отопления и горячего водоснабжения в Закавказье, Грузии, Южном Казахстане. Например, в Махачкале термальные воды применяют для теплофикации еще с первых послевоенных лет. Дагестан вообще богат такими источниками. Только за последние годы в республике использовано свыше 50 млн. м3 подземной горячей воды. Благодаря этому сэкономлено большое количество топлива. Тепло недр находит все большее применение в промышленных, бытовых и сельскохозяйственных целях. Им теперь отапливаются жилые дома в Кизляре и Избербаше и целые поселки: Каякент, Терекли-Мектеб и Червленные Буруны.

Неисчерпаемый источник подземного тепла находит и другое применение — в плавательных бассейнах, для предотвращения оледенения опасных участков горных дорог, для обогрева рыбоводных водоемов и т. п. Расширение сфер использования термальных подземных вод дает возможность не только значительно сэкономить топливо, но и снизить масштабы загрязнения им окружающей среды.

Вода и жизнь

Жизнь — биологическая форма движения материи. Жизненному процессу в отличие от неживой природы присущ обмен веществ, в основе которого лежат биохимические процессы. Изучение живых организмов, в том числе человеческого тела, показывает, что в их составе не обнаружено каких-либо химических элементов, не свойственных окружающему миру. Связь организма с внешней природой осуществляется через химические вещества, которые постоянно поступают в организм и являются составными элементами живой ткани.

Многие вещества проникают в организм через пищу, обязательной составной частью которой является вода. В организме человека обнаружено около 40 элементов периодической системы Менделеева, и в первую очередь кислород, углерод, водород и азот, содержание которых наиболее значительно. До 80 % минеральных солей (кальций, магний, натрий, калий, фосфор и др.), входящих в состав всех клеток и тканей человеческого тела, поступают в организм с водой. В составе живой ткани эти элементы чаще находятся не в свободной форме, а в виде химических соединений.

Необычайно важную роль в живом организме играет вода, это простое химическое соединение водорода и кислорода. В сложном процессе обмена веществ она занимает центральное место. При обязательном участии воды протекают физические и химические реакции. Являясь хорошим растворителем, она выполняет функции «перевозчика» солей и т. п.

Мы привыкли к воде, как привыкают к самым обычным явлениям — ведь она всегда с нами: в быту, на работе, в природе. Широкая распространенность воды породила представление о ней как о весьма простом теле. В течение многих веков ее принимали за элемент. Сейчас уже никто этого не скажет.

Вода — совершенно необыкновенный минерал. Прежде всего потому, что это самое известное и вместе с тем самое загадочное вещество. О воде, знакомой человеку с колыбели, написаны бесчисленные монографии, ученые продолжают изучать ее свойства. И тем не менее трудно найти другое вещество, в котором было бы спрятано столько труднообъяснимых качеств.

Необыкновенность физико-химических свойств молекул воды основана на способности их изменять структуру водородных связей. Эти связи легче разрушаются и быстро восстанавливаются. Между молекулами воды идет интенсивное взаимодействие, в результате происходит быстрое изменение их структурной решетки. Этим отличается структура молекул воды от других веществ, например твердых кристаллических тел, у которых существует устойчивая структурная решетка. Необыкновенность свойств молекул воды — одна из важнейших основ сложных биохимических реакций, присущих процессам жизни на нашей планете. Чтобы лучше понять роль воды в жизненных процессах, познакомимся со строением и свойствами ее молекул.

Физика и химия воды

Вода состоит из двух атомов водорода и одного — кислорода. Все, казалось бы, просто. Но на самом деле есть 42 сочетания этих атомов в молекуле воды, и 9 из них — устойчивы. Значит, наша обычная Н2O состоит из смеси девяти видов воды, имеющих весьма различные химические свойства.

Эта бесцветная и безвкусная жидкость обладает совершенно уникальной способностью образовывать необыкновенно прочную поверхностную пленку. На ней может лежать стальная игла, если, конечно, ее осторожно опустить. Более того, установлено, что чем чище вода, тем сильнее растет ее поверхностное натяжение, и если бы удалось получить когда-нибудь абсолютно чистую, без всяких примесей воду, то, как полагают ученые, по озеру такой воды можно было бы не только ходить, но и кататься на коньках.

Давно известна людям сила воды. Когда мифический Геракл приступал к свершению своего седьмого по счету подвига, он призвал на помощь силы природы. Чтобы расчистить конюшню царя Авгия, он запрудил реку, и взволновавшийся поток сделал то, что было не по плечу ни одному из эллинов.

Вода заставляет жернова мельниц молоть зерно, крутит колеса пароходов, вращает роторы гидротурбин, побуждая бежать по проводам электричество. Казалось бы, исчерпаны разнообразные возможности этого «исторического» вида энергии, узнаны все его способности. И в то же время нет, не все!

Водная струя диаметром 3–4 мм, подаваемая под давлением от 300 до 500 атм, режет «черный камень» — уголь. При давлении, в 5 раз большем, — мрамор, гранит, песчаник. Срезы аккуратные, гладкие — как ножом (цифра для сравнения: в водопроводном кране вода течет под давлением в 0,5 атм).

В нашей стране созданы основы гидроэкструзии — перспективного метода обработки материалов жидкостью высокого давления.

Метод гидропрессования, у истоков которого стоял выдающийся советский физик академик Л. Верещагин, обеспечивает ювелирную точность изделий при больших скоростях технологического процесса.

Гидромеханический способ добычи угля — один из прогрессивных. В Кузбассе и Донбассе, например, действуют целые шахты гидродобычи, где операции по выемке и погрузке угля выполняет вода. Производительность таких шахт очень высока. К обычным угольным комбайнам разработаны гидронасадки — дополнение для более эффективной и облегченной добычи угля. Работают они в комплексе с основными узлами машины — резцом, выгребающим устройством, конвейером. Но главное преимущество, которое дает приспособление, — это снижение запыленности воздуха в забое.

Образование воды из соединений водорода и кислорода при возникновении электрической искры впервые было отмечено в 1783 г. английским физиком Г. Кавендишом. В последующем известны много исследований по уточнению химического состава и физических свойств воды. То, что вода состоит из водорода и кислорода, показали в 1785 г. французский физик А. Лавуазье, а в 1805 г. — немецкий естествоиспытатель А. Гумбольдт и французский исследователь Гей-Люссак. Они определили состав воды: два объема водорода и один — кислорода молекулярный вес 18.

К настоящему времени установлено существование воды с молекулярным весом 19, 20, 21, 22. Такие молекулы воды состоят из более тяжелых атомов водорода и кислорода, т. е. водорода, имеющего атомный вес более 1, и кислорода — более 16. Оказалось, что в природе встречается тяжелый изотоп водорода с массой 2, который назван дейтерием (D) и еще более тяжелый изотоп, с массой 3, получивший название тритий (Т). У кислорода выявлены три изотопа с атомным весом 16, 17 и 18.

Соединение из двух атомов дейтерия и одного кислорода назвали тяжелой водой (D2O), а соединение двух атомов трития с одним атомом кислорода — сверхтяжелой водой (Т2O). В природных условиях 99,73 % составляет обычная вода с молекулярным составом Н21O16, 0,04 % — тяжелокислородная вода с составом Н21O17 и 0,02 % — H21O18. Доля тяжелой воды (D2O) и сверхтяжелой воды (Т2O) в природных водах чрезвычайно мала.

Тяжелая вода отличается от обычной как по физическим свойствам, так и по физиологическим воздействиям на организм. Испаряется она медленнее, чем обычная вода. Возможно, это является причиной большего содержания тяжелой воды во внутренних замкнутых водоемах южных широт.

Атмосферная вода в процессе круговорота обогащается дейтерием благодаря диссипации протонов в космическом пространстве. Именно благодаря этому дождевая вода более богата тяжелым водородом. Тритий может поступать в атмосферу в результате космических процессов, а также обогащать земную воду, правда, в очень небольших количествах, сверхтяжелой водой.

Любопытна структура внутреннего строения молекулы воды. В центре молекулы обычной воды располагается атом кислорода, а на некотором расстоянии — два атома водорода. Атомы водорода по отношению к атому кислорода находятся не по прямой линии, проведенной через центр атома кислорода, а под углом, равным 105°. Связь между атомами водорода и кислорода в молекуле воды осуществляется электронами.

Поскольку ядра атомов водорода и кислорода расположены несимметрично, молекулы воды имеют форму тетраэдра, в вершинах которого имеются четыре полюса зарядов.

Каждая молекула воды способна соединиться с четырьмя ближайшими к ней молекулами. При этом положительно заряженный полюс одной молекулы притягивает отрицательно заряженный полюс другой. Таким образом могут образоваться группировки молекул, состоящих из двух, трех и более молекул. В зависимости от температуры и давления среды, в которой находится вода, расстояния между молекулами могут увеличиваться или сокращаться. Это делает структуру воды исключительно изменчивой. Повышение температуры вызывает увеличение скорости молекул и расстояния между ними. Максимальная плотность воды достигается при температуре плюс 4 °C.

Вода, как все вещества в природе, при охлаждении от плюс 100° до плюс 4° уменьшается в объеме. При дальнейшем охлаждении воды до 0° ее объем увеличивается. Такое свойство типично только для воды. Ученые объясняют это тем, что при понижении температуры от 4° до 0° происходит перестройка ее внутренней структуры, жидкость превращается в лед, т. е. в кристалл, где молекулы образуют своеобразную решетку.

При замерзании объем воды возрастает примерно на 11 %. В связи с этим замерзание ее в замкнутом пространстве приводит к возникновению избыточного давления, достигающего, как показывают наблюдения, 2,5 тыс. кгс/см2. Этим объясняют разрушительную силу замерзающей воды в замкнутых пустотах, трещинах горных пород, откалывающую подчас многотонные глыбы и дробящую их в дальнейшем на мелкие осколки. С увеличением давления температура замерзания воды уменьшается. Эта зависимость для воды аномальна: у других веществ, наоборот, с ростом давления температура замерзания повышается. Подобная аномалия воды очень важна. Даже без учета растворенных в ней солей вода на больших глубинах в океане не замерзает, причем при температуре минус 3 °C этого не случается даже на глубине около 4 тыс. м.

Так как максимальная плотность воды наблюдается при 4 °C, то лед оказывается легче жидкой воды и поэтому плавает на ее поверхности. Если бы этого не происходило, то водоемы и водотоки промерзали бы зимой до самого дна, что было бы настоящей катастрофой для всего живого в них. Впрочем, эта особенность воды при некоторых условиях имеет исключения. Речь идет о возможности образования донного или внутриводного льда.

Теплоемкость воды в 3,3 тыс. раз выше теплоемкости воздуха. Иными словами, нагревая 1 л воды и 1 л воздуха на 1 °C, мы в первом случае затратим в 3,3 тыс. раз больше энергии, чем во втором. Климатическое значение этой аномалии трудно переоценить. Высокая теплоемкость делает воду главным аккумулятором солнечной энергии и распределителем ее на планете. Морские течения переносят тепло, накопленное летом в морях и океанах, из южных в северные районы земного шара, прогревая на пути воздух и воду, смягчая и выравнивая климат в этих шпротах.

О существовании течений в океанах знали давно: древние греки называли океан рекой и считали, что он течет подобно реке: они могли наблюдать сильные приливы и отливы лишь за пределами своих внутренних морей. Течения переносят громадные массы воды, перераспределяя накопленное Мировым океаном солнечное тепло. Один лишь Гольфстрим по своей мощности превосходит все реки планеты, вместе взятые. Благодаря этому течению каждый квадратный сантиметр европейского побережья получает в год 4 млрд. ккал — столько тепла выделяется при сжигании 0,5 млн. т угля.

В различных районах земного шара известны и другие поверхностные течения — теплые или холодные. Их издавна хорошо изучили мореходы и рыбаки; ученые основывали на данных об их мощности и направлениях свои заключения о циркуляции воды в верхних слоях океана. Например, Гольфстрим уже многие столетия является для мореходов своеобразной рекой в океане. Хорошо зная его режим и направление, опытный кормчий ведет корабль в струе Гольфстрима, сокращая время пути к берегам Европы, и, наоборот, двигаясь в обратном направлении, предпочитает держаться в стороне.

Из физических свойств воды можно обратить внимание на следующее. Толочь воду — не такое уж бесперспективное занятие, как выяснили эстонские ученые. Правда, вместо допотопной ступы они использовали дезинтегратор — своеобразную мельницу со стремительно вращающимися роторами.

Оказалось, что в активированной таким образом воде форель, например, растет в 1,5 раза быстрее. Из 100 икринок форели обычно появляются лишь 50 мальков, а в активированной воде — 90. Повышает она и урожаи различных культур.

Однако пока нет научного объяснения этого явления. Предполагают, что молекулы воды объединяются в некие цепочки, которые с течением тысячелетий удлиняются. Вода, как бы стареет, медленнее проникает в ткани растений и животных. А вот сотни миллионов лет назад, когда на Земле бушевали смерчи и ураганы, вода была богаче энергией, моложе. Рыбы в ней лучше развивались, потому и достигали огромных размеров. Дезинтегратор, по-видимому, проделывает ту же работу — разрушает цепочки молекул.

Являясь хорошим растворителем, вода сохраняет свою инертность. Благодаря этому свойству, живые организмы получают важнейшие питательные вещества в растворах, в малоизмененном виде.

В воде могут растворяться твердые, жидкие и газообразные вещества. Абсолютно нерастворимых в воде веществ в природе нет: в ничтожных количествах этому процессу подвержены даже такие элементы, как серебро, золото, гранит, базальт и др. В естественных условиях практически невозможно представить чистую воду. Она всюду обогащена примесями различных веществ. Дождевая вода имеет примеси веществ, находящихся в атмосфере. В воздухе над морями и океанами содержатся соли, характерные для морской и океанической воды. Вода рек и озер обогащена частицами поверхностной почвы и горных пород.

По содержанию ионов природные воды делятся на пресные, минерализация которых не превышает 1 г/л; минерализованные, содержащие от 1 до 50 г/л минеральных веществ, и рассолы, в которых содержится свыше 50 г/л минералов.

Наиболее распространенные группы минерализации образуются при растворении хлоридов, сульфатов и гид рокарбонатов, находящихся в недрах Земли. По этим признакам проводится классификация вод. Наиболее чаще встречаются воды: гидрокарбонатные, сульфатные и хлоридные.

В природных водах практически всегда присутствуют и микроэлементы. К ним относятся бор, бром, фтор, йод, медь, мышьяк, никель, кобальт, цинк и др. Вместе с водой микроэлементы поступают в организм человека, животных и растений. Хотя концентрации этих веществ находятся в сравнительно малых количествах, но они совершенно незаменимы. Они оказывают влияние на ход и направленность обменных процессов организма. В частности, они способныстимулировать или угнетать ферментные процессы, принимают непосредственное участие в процессах эритропоэза и гемоглобинообразования. Отмечено положительное влияние микроэлементов на рост, размножение и продолжительность жизни животных и растений.

Вода в живом организме

На долю воды приходится основная часть массы любого живого существа на Земле. У взрослого человека вода составляет больше половины массы тела. Именно у взрослого человека, потому что в разные периоды жизни содержание воды в организме изменяется. У эмбриона оно достигает 97 %; сразу после рождения общее количество воды в организме быстро уменьшается — у новорожденного ее уже только 77 %. Дальше содержание воды продолжает постепенно снижаться, пока не станет в зрелом возрасте относительно постоянным. В среднем содержание воды в организме мужчин от 18 до 50 лет составляет 61 %, женщин — 54 % от массы тела. Разница эта связана с тем, что организм взрослых женщин содержит больше жира; при отложении жира вес тела увеличивается и доля воды в нем снижается (у людей, страдающих ожирением, содержание воды может уменьшиться до 40 % от массы тела). После 50 лет организм человека начинает «усыхать»: воды в нем становится меньше.

Больше всего воды — 70 % всей воды организма — находится внутри клеток, в составе клеточной протоплазмы. Остальное — это внеклеточная вода: часть ее (около 7 %) находится внутри кровеносных сосудов и образует плазму крови, а часть (около 23 %) омывает клетки — это так называемая межтканевая жидкость.

Еще в 1858 г. знаменитый французский физиолог Клод Бернар сформулировал принцип постоянства внутренней среды организма — нечто вроде закона сохранения массы — энергии для живых существ. Этот принцип гласит: поступление в организм различных веществ должно быть равно их выделению. Ясно, что и потребление воды должно быть равным расходу. Как же человек расходует воду?

Водные потери организма учесть довольно трудно, потому что немалая часть их приходится на долю так называемых неощутимых потерь. Например, вода в виде паров содержится во выдыхаемом воздухе — это примерно 400 мл/сут. Около 600 мл/сут ее испаряется с поверхности кожи. Немного воды выделяют слезные железы (и не только тогда, когда мы плачем: выделяемая ими жидкость постоянно омывает глазное яблоко); вода теряется также с капельками слюны при разговоре, кашле и т. д. Остальные пути выделения воды легче поддаются учету: это 800—1300 мл в сутки, выделяемые с мочой, и около 200 мл — с испражнениями. Если суммировать все вышеуказанные цифры, то получается около 2–2,5 л; эта цифра, средняя, потому что расход воды может сильно колебаться в зависимости от внешних условий, индивидуальных особенностей обмена или в результате его нарушений.

В соответствии с этим и суточная потребность организма взрослого человека в воде составляет в среднем около 2,5 л. Это, впрочем, вовсе не означает, что человек должен каждый день выпивать не меньше 10 стаканов воды: основная часть потребляемой нами воды содержится в пище. Часть воды образуется также непосредственно в организме в процессе жизнедеятельности — при распаде белков, жиров и углеводов (эндогенная вода). Например, при окислении 100 г жиров возникает 107 мл воды, 100 г углеводов — 55 мл. Следовательно, наиболее выгоден (в смысле получения эндогенной воды) жир. И не случайно значительные жировые отложения наблюдаются как раз У тех животных, которые приспособились длительное время обходиться без воды извне, вырабатывая ее в своем организме. В их числе крупное животное пустыни — верблюд. Резерв жира в его горбе при полном окислении позволяет получить около 40 л эндогенной воды, что составляет суточную потребность в ней животного. Разумеется, солидный запас жира не заменяет полностью верблюду питьевой воды. Жировыми отложениями — источником эндогенной воды, кроме верблюда, обладают в пустыне курдючные породы овец. Жир накапливается в хвостах некоторых тушканчиков, под кожей желтого и малого суслика, ежей и т. д. Исключительно эндогенной водой утоляют жажду австралийские мыши.

Ни один жизненный процесс в организме человека или животного не может совершаться без воды и ни одна клетка не в состоянии обойтись без водной среды. С участием воды протекают практически все функции организма. Так, испаряясь с поверхности кожи и дыхательных органов, вода принимает участие в процессах терморегуляции.

Процесс пищеварения — важнейшая функция организма. Процесс пищеварения в желудочно-кишечном тракте протекает только в водной среде. В этом процессе вода играет роль хорошего растворителя почти всех пищевых продуктов.

Выпитая вода прежде всего всасывается сквозь стенки желудка и кишечника в кровь и с ней равномерно распределяется по всему организму, переходя из крови в межтканевую жидкость, а затем и в клетки. Такой обмен воды происходит довольно интенсивно. Находясь в состоянии соединения с водой, пищевые продукты (белки, углеводы, жиры, минеральные соли) также легко всасываются в кровь и поступают во все органы и затем ткани организма.

Переход воды из крови в межтканевую жидкость целиком подчинен физическим законам. Работа сердца создает внутри сосудов гидростатическое давление, стремящееся вытолкнуть жидкость сквозь стенку сосуда. Этому противодействует осмотическое давление, которое создают растворенные в крови вещества. Точнее говоря, главную роль здесь играет не осмотическое давление, а только та малая его часть (примерно 1/220), которую образуют белки плазмы крови — это так называемое онкотическое давление. Дело в том, что и воду, и низкомолекулярные растворенные вещества, создающие основную часть осмотического давления, стенки капилляров пропускают свободно, но для белков они практически непроницаемы. И именно онкотическое давление, создаваемое белками, удерживает воду внутри капилляра.

В начальной, артериальной части капилляра гидростатическое давление велико — оно гораздо больше онкотического. Поэтому вода вместе с растворенными в ней низкомолекулярными веществами выжимается сквозь стенки капилляра в межклеточное пространство. В конечной, венозной части капилляра гидростатическое давление значительно меньше, потому что здесь капилляр расширяется. Онкотическое же давление, образованное белками, здесь, наоборот, повышается, поскольку часть воды уже покинула капилляр и объем плазмы уменьшился, а концентрация белков в ней возросла. Теперь онкотическое давление становится больше гидростатического, и здесь вода, несущая с собой продукты жизнедеятельности клеток, поступает из межклеточного пространства обратно в сосудистое русло.

Такова общая картина обмена воды между кровью и тканями. Правда, этот механизм применим не во всех случаях; с его помощью, например, нельзя объяснить обмен жидкости в печени. Гидростатическое давление в печеночных капиллярах недостаточно для того, чтобы вызвать переход жидкости из них в межтканевое пространство. Здесь играют роль уже не столько физические законы, сколько ферментативные процессы.

Из межтканевой жидкости вода попадает в клетки. Этот процесс также определяется не только законами осмоса, но и свойствами клеточной мембраны. Такая мембрана, кроме пассивной проницаемости, зависящей от концентрации того или иного вещества по разные ее стороны, обладает еще и свойством активно переносить определенные вещества даже против градиента концентрации, т. е. из более разбавленного раствора в менее разбавленный. Другими словами, мембрана действует как «биологический насос». Регулируя таким путем осмотическое давление, клеточная мембрана управляет и процессами перехода сквозь нее воды из межклеточного пространства внутрь клетки и обратно.

Главный путь выведения воды из организма — почки; через них проходит около половины воды, покидающей тело. Почки — один из наиболее энергично работающих органов, потребление энергии на единицу веса здесь больше, чем в любом другом. Из всего поглощаемого человеком кислорода не менее 8—10 % используется именно в почках, хотя их вес составляет всего 1/200 часть веса тела. Все это свидетельствует о важности тех процессов, которые в них происходят.

В сутки через почки проходит более 1000 л крови — это значит, что каждая капля крови за сутки побывает здесь не меньше двухсот раз. Здесь кровь очищается от ненужных продуктов обмена веществ, которые она приносит из всех органов и тканей растворенными в плазме, т. е. в конечном счете опять-таки в воде.

Когда кровь проходит через начальную, артериальную часть почечного капилляра, около 20 % ее благодаря высокому гидростатическому давлению (в почечных капиллярах оно вдвое выше, чем в обычных) выходит сквозь стенку капилляра в полость почечного клубочка — это так называемая первичная моча. При этом, как и во всех остальных капилярах организма, сквозь стенку почечного капилляра проходят все растворенные в плазме вещества, кроме белков. Среди них помимо отбросов, которые необходимо удалить из организма, есть и нужные вещества, выделение которых было бы бессмысленным расточительством. Этого организм позволить себе не может, и поэтому в почечном канальце, куда первичная моча попадает из почечного клубочка, производится тщательная сортировка. Питательные вещества, различные соли, другие соединения постоянно реабсорбируются — переходят сквозь стенки канальца обратно в кровь, в примыкающий к канальцу капилляр. Ведущую роль в этом процессе реабсорбции играют сложные ферментативные реакции.

Вместе с полезными веществами покидает первичную мочу и вода. В начальном отделе почечного канальца вода реабсорбируется пассивно: она переходит в кровь вслед за активно реабсорбируемым натрием, глюкозой и другими веществами, выравнивая возникающую разницу в осмотическом давлении.

В конечном же отделе почечного канальца, когда реабсорбция полезных веществ уже в основном закончена, возвращение воды в кровь регулируется иным механизмом и зависит только от того, насколько нужна организму сама эта вода. В стенках кровеносных сосудов разбросаны нервные рецепторы, которые очень тонко реагируют на изменение содержания воды в крови. Как только воды становится меньше, чем нужно, нервные импульсы от этих рецепторов поступают в гипофиз, где начинает выделяться гормон вазопрессин. Под влиянием его вырабатывается фермент гиалуронидаза. Фермент делает проницаемым для воды стенки почечных канальцев, разрушая водонепроницаемые полимерные комплексы, входящие в их состав, — как будто открывает кран для выхода воды сквозь стенку канальца. В результате вода, теперь уже следуя законам осмоса, переходит в кровь. Чем меньше воды в организме, тем больше выделяется вазопрессина, тем больше вырабатывается гиалуронидазы, тем больше воды всосется обратно в кровь.

В конечном счете из всей первичной мочи лишь меньше 1 % выделяется почками в виде «настоящей» мочи, которая теперь уже содержит только отработанные продукты жизнедеятельности и только ненужную организму воду.

Экспериментально установлено, что для удаления отходов жизнедеятельности человеческого организма требуется ежедневно не менее 500 мл мочи. Если человек пьет много воды, она разбавляет мочу, удельный вес которой понижается. При недостаточном поступлении воды в организм, когда после восполнения потерь ее через кожу и легкие на долю почек остается меньше 500 мл, часть отработанных продуктов жизнедеятельности остается в организме и может вызвать его отравление. Именно этим опасно водное голодание.

Особенно тяжело человек переносит обезвоживание. Если потери воды не восполняются, то в результате нарушений физиологических процессов ухудшается самочувствие, падает работоспособность, а при высокой температуре воздуха нарушается терморегуляция и может наступить перегрев организма. При потере влаги, составляющей 6–8 % от веса тела, у человека повышается температура тела, краснеет кожа, ускоряется сердцебиение, учащается дыхание, переходящее в одышку, появляется мышечная слабость, головокружение, головные боли и наступает полуобморочное состояние. При потере 10 % воды могут происходить необратимые изменения в организме. Потеря воды в количестве 15–20 % при температуре воздуха выше 30° является уже смертельной, а потеря 25 % воды смертельна и при более низких температурах.

Отходы жизнедеятельности человека выделяются также с потом. В среднем поверхность человеческого тела занимает 1,5 м2.

Человек в сильную жару очень потеет. За сутки он буквально «выдает» ведро пота: был бы сух воздух.

Главная составная часть жидкости в таком ведре — обычная, ничем не примечательная вода. В ней растворены нелетучие и летучие компоненты. С нелетучими ознакомиться просто — пот соленый: около 1 % NaCl, да еще фосфаты и сульфаты. Много в поте и креатинина. А вот с летучими компонентами плохо знакомы даже специалисты, но кое-что все же известно: космобиологи пришли к выводу, что даже мало потеющий человек через кожу выделяет столько веществ, что трехкубовая замкнутая атмосфера за сутки насытится вредоносными соединениями выше предельно допустимых норм. На Земле это не беда, но в космосе форточку не откроешь.

Чтобы космонавтов не задушил собственный пот, необходимы специальные поглотители, причем разные — с потного лица или влажной ладони испаряются такие малоприятные вещества, как метанол, ацетальдегид, этанол, ацетон, изопропанол, уксусная кислота. В этой смеси преобладает уксусная кислота.

Велика роль воды в живом организме. Вода является и средой и непосредственным участником физиологических и биохимических реакций. С водой из организма выделяются различные вещества, образовавшиеся в результате обмена веществ.

Биологическое значение талой и льдоподобной воды

Ни одно вещество на Земле, кроме воды, не может находиться сразу в трех состояниях — жидком, твердом и газообразном. Впрочем, и здесь еще много загадок. При нагревании лед начинает таять: движение молекул под влиянием температуры усиливается, кристаллическая решетка слабеет, связи между молекулами разрушаются, лед превращается в воду. Но оказалось, что талая вода еще долго сохраняет остатки кристаллической структуры, и скрытые от глаз микроскопические льдинки исчезают только при температуре плюс 4 °C и выше.

При нагревании талой воды от 0° до 4 °C ее объем уменьшается. С помощью инфракрасной спектроскопии удалось рассмотреть структуру талой воды: она напоминает ледяной замок с пустыми залами. При нагревании льда стены замка разрушаются — объем уменьшается.

Физики и биологи, медики и ветеринары, земледельцы и животноводы все с большим вниманием изучают свойства талой воды, во многом еще загадочные.

Ранней весной воробьи с наслаждением барахтаются в свежих лужицах. Истощенные, потерявшие было надежду ка приход весны, они очертя голову бросаются в первые лужи и расплескивают вокруг себя искрящиеся фонтаны брызг.

Жителям Севера знакома такая картина: огромные стада оленей отогнаны в места скопления талой воды. Благородные животные блаженно пасутся «по колено» в ледяной воде.

Агрономы провели интересные опыты. Засеяли два равноценных участка: один низкосортными семенами пшеницы, другой — точно такими же, но принявшими в день посева полуторачасовую «снеговую ванну». Опытные растения значительно превзошли контрольные по высоте и толщине стебля, величине колоса. С каждого гектара опытного участка сняли по 18,3 ц пшеницы, с контрольного — только 11 ц.

В последнее время установлено, что вода, связанная с клеточной протоплазмой, и вода, входящая в состав межклеточной жидкости и других образований организма, принимает структуру, напоминающую лед. Такую воду принято называть структурированной. Она замерзает при температуре минус 20 °C (в тканях живого организма существует и свободная вода, которая замерзает при 0°). Структурированная вода более важна для сохранения функции и жизнеспособности тканей человека и растений, чем свободная.

При 36 °C «пустые залы ледяных дворцов структурированной воды заполняются живыми биомолекулами — белками, нуклеиновыми кислотами. Благодаря такой плотной упаковке белок не деформируется и не погибает, вода с упорядоченной структурой участвует в синтезе живого вещества — в биоэнергетических процессах клетки».

И если такая гипотеза справедлива, то талая вода может не только повышать физические ресурсы живого организма, но и препятствовать синерезису — уменьшению содержания воды в клетках в старческом возрасте.

Не в этом ли секрет долгожительства в горных районах, где люди постоянно пьют воду, стекающую с тающих ледников и горных снегов?

Теоретическая разгадка тайны талой воды еще впереди.

Издавна в народе было подмечено, что вода после таяния льда некоторое время отличается от обычной. Ученые установили, что ее можно считать своеобразным биологическим стимулятором. В ней, как уже отмечалось, лучше и быстрее прорастают семена, а ростки становятся мощнее. Даже цыплята, если пьют талую воду, обгоняют в росте своих сверстников. Исследуя физико-химические свойства этой воды, специалисты обнаружили отклонения в ней как по вязкости, так и по диэлектрической проницаемости. Только через несколько суток вода «приходит в норму». Причина этого явления пока не открыта. Но название этому уже дано — «структурная память воды». По выдвинутой гипотезе загадка талой воды таится в тонких изменениях структуры ее молекул.

О важной биологической роли свежеталой воды свидетельствуют наблюдения и специальные исследования, проведенные учеными еще в 60-е годы. Так, в работах И. Г. Лобиной (1965) было отмечено увеличение плодовитости мышей, пьющих талую воду. Б. Родимов сообщает (1965), что, по наблюдениям томских ученых, свинья, которую поили талой водой, родила 10 поросят весом по 1,5 кг, тогда как вес поросят, родившихся от свиньи, получавшей обычную воду, составлял 1,0–1,1 кг. Поросята, которым давали талую воду, в месячном возрасте весили почти в два раза больше своих собратьев, получавших воду обычную. В другом эксперименте две группы кур одного веса содержались в одинаковых условиях за исключением того, что одну из них поили только снеговой водой. В результате куры этой группы снесли яиц в 2 раза больше.

В Томском ботаническом саду огурцы, политые талой водой, давали урожай в два раза больше, чем политые водой обычной. В Томском медицинском институте 25 больных, среди которых были люди различного возраста, страдающие сердечно-сосудистой патологией и нарушением обмена веществ, в течение трех месяцев пили только талую воду. В результате у них было зарегистрировано снижение количества холестерина в крови и отмечено улучшение процесса обмена веществ.

В экспериментальных исследованиях, проведенных О. А. Ластковым (1977), группе крыс и мышей вводили под кожу физиологический раствор, приготовленный на свежеталой дистиллированной воде или давали свежеталую воду для питья. К концу эксперимента эти животные оказались намного жизнеспособнее тех, которым или вводили физиологический раствор на обычной дистиллированной воде или поили ею. По другим наблюдениям экспериментатора, у рабочих «горячего» производства, употребляющих для питья свежеталую воду, снижалась температура кожи и тела, в то время как у рабочих, пользующихся обычной водой, этого не происходило. Группе рабочих-горняков систематически ингалировали свежеталой водой слизистые оболочки носоглотки. В результате они стали намного реже болеть катарами верхних дыхательных путей, ангинами и бронхитами: талая вода способствовала нормализации основных функций слизистой оболочки.

Вода и растения

Вода находится в вечном круговороте. Растения — самые активные участники этого великого природного процесса, благодаря которому ежегодно в движение приводится более 475 млрд. т воды.

Как известно, сухое созревшее семя при правильном хранении может годами не проявлять признаков жизни. Однако, попав во влажную среду, семя начинает набухать и выделять корешок. Этот процесс — прорастание семени — происходит в результате насыщения водой клеток зародыша. В этих условиях и при соответствующей температуре воздуха клетки зародыша начинают размножаться путем деления.

Для того чтобы хорошо представить себе значение воды для растений, важно понять, из чего состоит их тело. Установлено, что главными элементами состава растений являются углерод (45 %), водород (6,5 %), кислород (42 %), азот (1,5 %); зола, включающая различные минералы (5 %). Кислород и водород играют важную роль в формировании белков, жиров и углеводов растений. Источником кислорода и водорода для растений является вода. Углекислый газ проникает через многочисленные микроскопические отверстия (устьичные отверстия) на кожице листьев растений и попадает в межклетки. В процессе; дальнейшего усвоения углекислого газа непосредственное участие принимает также вода. Образующийся при этом кислород выделяется в окружающую атмосферу.

Для превращения углекислого газа и воды в сахар, крахмал и другие органические вещества необходима солнечная энергия. Этот процесс называется фотосинтезом (образование высшими растениями, водорослями, фотосинтезирующими бактериями сложных органических веществ, необходимых для жизнедеятельности растений). В результате фотосинтеза растительность земного шара ежегодно образует более 100 млрд. т органических веществ.

Высокая эффективность фотосинтеза высших зеленых растений обеспечивается совершенным синтетическим аппаратом, основа которого внутриклеточные органеллы — хлоропласты.

Оптимальная интенсивность фотосинтеза растений наблюдается при небольшом дефиците воды в листьях. Уменьшение или увеличение воды вызывает уменьшение интенсивности этого процесса. Понижение интенсивности фотосинтеза по мере увеличения количества воды в листьях объясняется затруднением доступа углекислого газа вследствие насыщенности межклеточных пространств водными парами и уменьшением проницаемости мембран протоплазмы, хлоропластов для этого газа. Падение интенсивности фотосинтеза при значительном водном дефиците связано с увеличением вязкости протоплазмы, изменением структуры хлоропластов, что затрудняет доступ (и транспорт) углекислого газа в хлоропласты. Вместе с тем этому может содействовать замедление скорости движения протоплазмы и ее структурных образований при значительном водном дефиците. Важно также учитывать, что вода оказывает непосредственное действие на процесс фотосинтеза: атомы водорода и кислорода молекулы воды служат «строительным материалом» в процессе синтеза органических соединений.

В настоящее время фотосинтез считают окислительно-восстановительным процессом, при котором углекислота восстанавливается за счет водорода воды и других субстратов. Было доказано, что уравнение 6CO2+2H2O →свет→ C6H12O6 + 6O2 отражает лишь частный случай фотосинтеза. В более общем виде (применительно к фототрофным растениям и бактериям, фиксирующим углекислоту) итог процесса может быть выражен следующим образом: CO2 + 2H2A →свет→ (CH2O) + H2O + 2A, где H2A — донор водорода (электрона), а CH2O — символ образуемых органических веществ.

Согласно гипотезе В. М. Кутюрина, механизм окисления воды при фотосинтезе сопряжен с фотоокислением хлорофиллов. Окисленная форма хлорофилла окисляет кислород воды, причем вся последовательность реакций от первичного окисления до выделения кислорода в свободном виде осуществляется путем передачи промежуточных продуктов по ламеллярной структуре хлоропластов.

Физиологические процессы растений могут протекать нормально при условии достаточного насыщения его клеток водой. Основным органом, обеспечивающим водой растения, служит корневая система. Это множество тонких нитей, пронизывающих почву во все направления в виде корешков. Корневая система состоит из трех зон: растущей, всасывающей и проводящей. Зоны эти представляют собой различные возрастные состояния. По мере удлинения корня более взрослая часть заканчивает рост в длину, внутри нее проходят сосуды, проводящие воду. На поверхности взрослого корня появляются корневые волоски, выполняющие роль всасывающего аппарата. Верхушки корневых волосков являются зоной роста. По мере роста корневые волоски превращаются в проводящую зону. Так происходит непрерывное перемещение корней в почве. Всасывающий аппарат — корневые мочки всасывают воду из почвы и направляют ее в проводящие сосуды в восходящем направлении к листьям растений. Корень снабжает растение не только водой, но и элементами минеральных солей (азота, фосфора, калия, кальция, магния, железа, серы и т. д.).

Вода строго регулируется внутри организма растений. Как правило, больше всего водой обеспечиваются те части растений, которые наиболее важны на данном этапе роста и развития. В период роста важнейшими являются листья, в период цветения — органы формирования семени.

Постоянное перемещение воды внутри растений и выделение ее в окружающую среду происходит благодаря активным механизмам — осмотического давления клеток и процесса испарения воды листьев растений. Важнейшую роль в проявлении осмоса играют внешние слои протоплазмы клеток растений. Испарение, воды с поверхности листьев происходит одновременно с проникновением углекислого газа воздуха в клетки растений. Для того чтобы углекислый газ мог проникнуть в клетки растений, необходимо периодически открывать устьичные отверстия на поверхности листьев. В это же время происходит и процесс испарения воды, находящийся в межклетниках растений. Установлено, что за период от сева до уборки одно растение кукурузы испаряет до 200 л воды. Расход влаги с 1 га кукурузного поля составит около 6 тыс. т, 1 га яровой пшеницы — 3,42 тыс, т, ячменя — 4,59 тыс. т, овса — 5,625 тыс. т, клевера — до 7430 т, капусты до 6000 т. Еще больше воды испаряют деревья: взрослая береза — около 70 л в день, липа — 38 л в день. Для создания 1 кг зерна пшеницы нужно от 0,75 до 1,2 тыс. кг воды, соответственно для овса — 1,260 тыс. кг.

С помощью осмотических понятий удалось объяснить поступление воды и растворенных веществ в растительные клетки, так называемый пассивный транспорт. Д. А. Сабинин предположил, что помимо осмотического, т. е. физического механизма, должно существовать и активное поглощение воды клетками, связанное с обменом веществ.

А. М. Алексеев установил: протоплазма, богатая высокополимерными соединениями, оказалась способной к набуханию и отбуханию, что играет положительную роль во внутриклеточном обмене. Он показал, что активная подача воды корнем намного уступает пассивному ее передвижению.

Чем меньше газов в воде, тем она лучше для растений. Вода, лишенная газов, удивительно меняет свою биологическую активность. Так, если воду подогреть до 70°, 90° или до 100 °C, герметично закрыть и охладить до 20 °C и в этой дегазированной воде замочить 1 кг семян сахарной свеклы, то это позволит получить прибавку к урожаю 42–48 %. Два стакана такой воды на килограмм зерна, — и колосья пшеницы дышат интенсивнее. Разумеется, и урожай выше.

Это явление можно объяснить следующим образом. Для роста и развития растений большое значение имеют микроэлементы — мельчайшие дозы меди, железа, марганца, цинка, молибдена, никеля и других металлов, растворенных в воде. Кислород, содержащийся в пузырьках газа, окисляет микроэлементы — и растения их почти не усваивают.

В водном режиме растений важную роль играет влажность почвы. Различные почвы удерживают разное количество воды. Наиболее влагоемки глинистые почвы, наименее — песчаные. Вода в почве находится в состоянии доступном и недоступном для растений. Наиболее доступна для корней растений вода, заполняющая промежутки между комочками почвы. Однако существует вода, входящая в состав почвенной структуры. Такая вода удерживается частицами почвы с большой силой и поэтому становится недоступной для растений. Когда почва увлажнена неравномерно, тогда корень растений старательно обходит сухие участки, предпочитая им более влажные. Если в дневное время в сухую и жаркую погоду растения теряют влаги больше, чем получают ее корневой системой, то ночью, когда процесс испарения снижается, и благодаря нагнетающей работе корней водный дефицит может выравниваться. Если приход воды систематически не покрывает ее расход, растение может засохнуть.

Первое проявление дефицита воды — появление вялости и поникание листьев и стеблей. Установлено, что дефицит воды выше 20 % ведет к снижению интенсивности фотосинтеза — основного процесса образования органических веществ. Если дефицит воды достигнет 50 %, прекращается процесс фотосинтеза. Как показывают исследования физиологов разных стран, водный дефицит является причиной нарушения всех биохимических и физиологических процессов у растений. Происходит снижение интенсивности клеточного деления и роста клеток. Резкий водный дефицит может вызвать прекращение внутриклеточных обменных процессов вплоть до разрушения белков и углеводов.

Вот как реагируют растения на резкий недостаток воды: автоматически закрываются устьичные отверстия, вместе с этим прекращается поступление углекислого газа воздуха и испарение воды из межклетников, приостанавливается процесс фотосинтеза, отсюда как последствие — уменьшается рост надземной части растений. Внутри растения происходит перемещение влаги, более молодые листья оттягивают воду от более старых. В результате недостатка влаги старые листья завядают и затем отмирают. Дальнейший дефицит влаги и повышение температуры может привести к засыханию и молодых листьев. В последнюю очередь реагируют цветочные органы. Когда степень обезвоживания достигает предела, происходит гибель всех клеток и тканей.

В тех случаях, когда вода вновь поступит в растение раньше, чем оно погибнет, то полного восстановления его тканей может не произойти. Такие растения становятся низкорослыми и дают низкий урожай.

У большинства растений существует чувствительный период к недостатку влаги, так называемый критический период, Для зерновых злаков наибольшая чувствительность к недостатку влаги наступает в период трубкования — колошения. Дефицит воды в критический период очень опасен, так как это может привести к снижению урожайности зерновых и других культурных растений.

Установить природу засухоустойчивости во многом помогли работы К. А. Тимирязева, который изложил новую для того времени точку зрения на испарение воды листьями. Он показал, что этот процесс неизбежен. Растения должны периодически открывать микроскопические отверстия в листьях, чтобы давать возможность углекислому газу проникать в клетки, а чтобы водный баланс сильно не нарушался, у растений имеются специальные приспособления для защиты от чрезмерного испарения и перегрева. Растения, обладающие высокой степенью засухоустойчивости, могут переносить значительный дефицит воды. Клетки таких растении не теряют способность проявлять многие важные жизненные процессы, в том числе и образование органических веществ.

Вода может быть поглощена растением в виде пара из атмосферного воздуха. Однако этот путь не имеет существенного значения в обеспечении растений водой, так как это не может спасти их от гибели в условиях почвенной засухи.

Растениям доступна гравитационная и капиллярная вода, и недоступна пленочная (гидроскопическая). Последняя, связанная с коллоидами почвы, может быть использована корнем лишь во время почвенной засухи, в том случае, если корневой волосок приходит с ней в непосредственный контакт. Гравитационная вода заполняет широкие промежутки между частицами почвы и под влиянием силы тяжести постепенно перемещается в ее нижние горизонты нисходящим током. Корни растений легко поглощают ее, пока она находится в зоне их распространения. Капиллярная вода заполняет тончайшие капилляры между частицами почвы, она не перемещается в нижние слои почвы под действием силы тяжести, являясь основным источником воды для растений. Источники воды в почве — атмосферные осадки, грунтовая вода, поливная вода.

Растения усваивают влагу из росы, которая впитывается через устьицы листьев внутрь растений. Таким способом растения дополняют недостаток воды, возникший в течение дня засушливого периода года. Образование росы в целом же оценивается как положительное явление в жизни растений — роса увлажняет не только растительный покров, но и почву. Часть влаги, образовавшейся от росы, всасывается и корнями растений. Случается, что роса служит единственным источником влаги. В некоторых районах земного шара, в частности в прибрежных пустынях Перу и Западной Африки, растения существуют за счет влаги туманов. Растительность в этих районах встречается в горах на высоте образования туманов (около 400 м). Следует отметить, что влага росы и туманов имеет большее значение для дикой растительности, чем для культурных растений.

В засушливых районах земного шара, особенно в пустынях, растения приспособлены к недостатку влаги. Испытывая дефицит влаги в верхних слоях, в погоню за ней устремляются и корни. Наибольшее распространение в пустыне имеют верблюжья колючка, саксаул и некоторые другие растения, у которых надземная часть во много раз меньше подземной. За счет незначительного роста надземной части растения меньше теряют воды на испарение, Корневая же система, чтобы достичь грунтовых вод, проникает на достаточно большие глубины. Длина корней верблюжьей колючки достигает 10–20 и более метров глубины. Саксаул развивает корневую систему до 20–30 м глубины, тогда как обычная высота растения составляет 2–2,5 м. На уровне водоносных слоев почвы корневая система ветвится густой сетью корешков.

Существуют еще индивидуальные особенности, благодаря которым растения по-разному реагируют на засуху. При одних и тех же условиях влажности почвы одни растения могут погибнуть, а другие спокойно существовать. Зависит это от развития корневой системы и сосущей силы клеток корня. Как правило, сосущая сила корней усиливается в сухую погоду и снижается при влажной. Растения, у которых корни имеют большую разветвленность, обладают хорошей сосущей силой. У многих дикорастущих растений корневые системы развиты значительно сильнее, чем у культурных.

Менее других подвержены засухе растения, корни которых идут в глубину по направлению водоносного слоя. Такими являются пустынные растения. Корневая система у таких растений разветвляется как в глубине — до нескольких метров, так и у поверхности — до 1 м. Поверхностная система корней поглощает влагу весной, когда почва достаточно увлажнена водой после дождей и растаявшего снега.

За счет слабого развития листьев растения в пустыне мало теряют воду путем испарения. Листья, превратившиеся в колючки есть у большинства кактусов и верблюжьей колючки, в виде шиловидных выростов они сохранились у некоторых опунций и белого саксаула и т. д. Для того чтобы меньше испарялась вода на поверхности листьев у медвежьего ушка развито густое мохнатое покрытие, а у других — камелии, фикуса, иглицы — имеется глянцевая поверхность стеблей и листьев, отражающая солнечные лучи и предохраняющая от перегрева. Для этих же целей у серебристого лоха развиты чешуйки. В пустыне некоторые растения, чтобы предохраниться от перегрева и сократить испарение воды, выделяют эфирные масла или кристаллы минеральных солей, способных преломлять солнечные лучи, покрывают поверхность листьев восковым налетом и смолистыми веществами.

Большую защитную роль играет расположение листьев. Чтобы сохранить влагу почвы, листья растений в дневное время располагаются параллельно почве, тогда как ночью поворачиваются к ней ребром. Алоэ, кактусы и многие другие растения накапливают влагу в стеблях, листьях и корнях.

Растения отдают воду во внешнюю среду через устьичный аппарат листьев. Вместе с тем многие растения в сухое время года, чтобы сохранить потери влаги, приспособились сбрасывать листья и даже целые побеги. К ним относятся саксаул, джузчун и др. Такие растения приспособлены жить в местах сухого климата. Они отличаются и по внешнему виду от тех растений, которые требуют для жизни достаточной влаги.

В целом же растения в процессе эволюционного развития приспособились к различным условиям водообеспечения. Вода для одних растений является не только необходимым продуктом, но и средой обитания. Растения влаголюбивые — гидрофиты (от греч. «гидро» — вода и «фитон» — растения) — растут полностью или частично погруженными в воду. Это водоросли и цветковые водные растения. К растениям, местом обитания которых являются умеренно увлажненные почвы, относятся большая группа мезофитов (от греч. «мезос» — средний): луговые травы типа клевера, злаки, большинство лесных трав, почти все лиственные деревья, многие полевые культуры (овес, рожь, картофель), овощные (капуста, укроп, салат), плодово-ягодные (яблоня, смородина и др.). При достаточной влаге почвы они приносят большой урожай зеленой массы и плодов. Эти растения плохо переносят как засуху, так и чрезмерное увеличение влаги.

Наиболее устойчивы к засухе растения ксерофиты (от греч. «ксерос» — сухое, приспособленные жить в местах сухого климата — степях, полупустынях и пустынях). Ксерофиты, в свою очередь, делятся на две группы. Среди них — большая группа суккуленты (в переводе с лат. — «сочный», «жирный», «толстый»). В стеблях и листьях суккулентов запасается вода. Этому способствует особое строение их клеток и тканей. Вода расходуется очень экономно. Устьиц на поверхности листьев мало и расположены они в ямках — бороздах, которые большей частью времени закрыты. Вследствие этого испарение воды происходит ограничено. Корни у суккулентов располагаются на поверхности почвы, поэтому пополнение воды идет после дождей. В тканях кактусов содержится до 95 % воды. Кактусы в Южной Америке высотой до 20 м способны накапливать до 1000 кг воды. Много кактусов в жарких сухих районах Мексики, Южной Африки и в Австралии, где периодически идут ливневые дожди.

Другая группа ксерофитов называется склерофитами (от греч. «склерос» — твердый, жесткий). Эта саксаул, верблюжья колючка, полыни и др. Содержание воды в тканях этих растений очень мало, они могут выдерживать потери воды до 25 % и более. Корневая система развита хорошо и достигает до водоносного слоя почвы. Надземная часть меньше, чем корневая система.

Растения оказывают большое влияние на поддержание влаги в почве и в воздухе. Особенно это проявляется в лесу и близрасположенной к нему территории. Во время дождя большое количествое воды тратится на смачивание кроны деревьев, много воды в виде капелек удерживается па листьях. Наибольшее количество дождевой воды и снега удерживают еловые деревья, слабее — лиственные. Деревья создают такие условия, которые способствуют уменьшению испарения воды из почвы. Кроме того, сами деревья выделяют большое количество воды в воздух.

Подсчитано, что в течение вегетационного периода лес испаряет в воздух такое количество влаги, которое почти равно годовой сумме выпадающих осадков. Все это является важным фактором сохранения и регулирования водных ресурсов и создания благоприятного климата в лесу и близлежащих территориях. Поэтому в настоящее время придается большое значение лесонасаждению, которое широко проводится в нашей стране для снегозадержания, уменьшения вредного влияния на сельскохозяйственные поля ветров и т. д.

Таким образом, вода — необходимое условие для жизни растений. При участии воды совершаются практически все физиологические процессы. Образуя внутреннюю среду, вода оказывает активное влияние на протекание жизненных процессов. Кроме того, вода создает условия единства и взаимосвязи почвы, растений и атмосферы.

Вода и человек

Загрязнение воды и здоровье

Вода может оказывать на здоровье людей не только положительное, но и отрицательное влияние. Прежде всего это связано с качеством употребляемой воды: ее органолептическими свойствами, определяемыми цветом, вкусом и запахом, а также химическим и бактериальным составом. Влияние качества воды на здоровье человека было отмечено еще в глубокой древности. Например, Гиппократ рекомендовал употреблять кипяченую воду.

Еще до открытия существования болезнетворных микроорганизмов с водным фактором связывали многие эпидемии заразных кишечных заболеваний. После работ Пастера, Коха и других ученых стало известно эпидемиологическое значение воды в распространении таких инфекционных заболеваний, как холера, брюшной тиф, дизентерия, парафиты. Впоследствии была установлена возможность передачи через воду и других инфекционных заболеваний — туляремии, лептоспироз, инфекционного гепатита.

Фекалии человека и фекально-бытовые сточные воды являются основным источником патогенных микроорганизмов, распространяемых водой. Фекальное загрязнение воды ухудшает ее качество, а патогенные микроорганизмы, попадающие в нее с выделениями теплокровных животных, могут явиться причиной роста заболеваемости кишечными инфекциями. Среди патогенных микроорганизмов чаще других обнаруживаются сальмонеллы, шигеллы, лептоспиры, пастереллы, вибрионы, микобактерии, энтерозирусы человека, амебные цисты и личинки нематод. Сальмонеллы нередко встречаются в сточных водах, в воде рек, ирригационных систем и колодцев и в приливной морской воде. Другие патогенные микроорганизмы в воде находятся реже.

Быстрый рост городов приводит к непрерывному увеличению количества хозяйственно-бытовых стоков в водоемы. Биологическая очистка сточных вод не обеспечивает эффективного снижения микробного загрязнения — требуется еще дезинфекция стоков. Однако она не всегда осуществляется, и в результате в водоемах обнаруживаются возбудители кишечных инфекций.

Отрицательно влияет на процессы самоочищения воды и химическое загрязнение водоемов в результате спуска туда промышленных стоков, вызывающих торможение окислительных процессов и отмирание микроорганизмов. Неблагоприятными факторами, нарушающими процессы самоочищения, является спуск термальных сточных вод крупных тепловых электростанций, а также увеличение поступления биогенных элементов (азота, фосфора и др.).

Причины инфекционных заболеваний водного происхождения различны. И в первую очередь это —неудовлетворительный контроль за очисткой воды, загрязнение водосборной и распределительной (резервуары, сеть, трубы) систем, употребление воды поверхностных водоемов без очистки. Вода — один из специфических факторов передачи кишечных инфекций, и в первую очередь тифо-паратифозных заболеваний. При этом эпидемические вспышки возникают не только при непосредственном использовании для питья загрязненной воды, но и при косвенном ее участии: мытье посуды, оборудования, а также рук, приготовлении некоторых блюд. Так, Дьюмас и др. описали вспышку брюшного тифа, охватившую 197 человек. Они установили, что все семьи, члены которых заболели брюшным тифом, пользовались молоком, полученным с одной и той же фермы, где молочную посуду мыли необезвреженной водой из реки. Мобест сообщил о вспышке тифо-паратифозных заболеваний на корабле, вызванной тем, что члены экипажа употребляли сухое молоко, которое приготовляли в котлах, промывавшихся загрязненными водами гавани.

В 1925 г. в с. Лепино (недалеко от Москвы) вспыхнула эпидемия брюшного тифа. При обследовании выяснилось, что все заболевшие пользовались для питьевых и хозяйственных нужд водой из р. Медвянки, которая протекала через населенный пункт и была сильно загрязнена. При исследовании воды, взятой из этой реки, была выделена брюшнотифозная палочка. Затем заболевания распространились среди жителей деревень, находившихся ниже по течению реки; переболело более 100 человек. Только в двух населенных пунктах не было больных. Жители этих поселков пользовались водой из других источников.

Ранее всего связь водного фактора с распространением заболеваний стала очевидной в отношении холеры. Первая водная эпидемия холеры отмечена в Лондоне в 1854 г. В 1892 г. в Гамбурге, жители которого получали воду из реки через плохо устроенный водопровод, вспыхнула большая эпидемия холеры. Заболело 18 тыс. человек, проживающих во всех частях города. При этом умерло 8,605 тыс. человек. В 1908 г. водная эпидемия холеры потрясла Петербург, заболели 20,835 тыс. человек, из них 4 тыс. умерло. Подобные эпидемии наблюдались в Ростове-на-Дону (1908 г.), в ряде приволжских городов (1910 г.) и других населенных пунктах.

Возможность передачи вирусов водным путем лучше всего была продемонстрирована на примере возбудителей инфекционного гепатита. Самая большая вспышка вирусного гепатита водного происхождения зарегистрирована в Дели (Индия) в 1955–1956 гг. и включает более 20 тыс. клинических случаев.

По подсчетам специалистов, 800 млн. человек на земном шаре страдают от болезней, вызванных нехваткой питьевой воды. Среди них желудочно-кишечные заболевания, катары, болотная лихорадка и т. п. Всемирная организация здравоохранения совместно с другими международными организациями разработала программу «Здоровая вода для всех к 1990 году». Для осуществления этого грандиозного проекта понадобится 140 млрд. долларов.

По данным Всемирной организации здравоохранения, только 11 % жителей Азии обеспечены водой удовлетворительного качества; еще меньший процент людей живет в домах, имеющих водопровод и канализацию. В некоторых странах начали внедрять методы вторичного использования сточных вод и переработки отходов в удобрения. Однако, как правило, сточные воды все еще спускаются в реки и моря без предварительной очистки.

В реки и озера нашей планеты, воду которых мы потребляем, ежегодно сбрасывается до 7000 млрд. м3 неочищенных стоков. Особенно интенсивно загрязняют пресноводные источники крупные города.

«Клоака № 1», «крупнейшее помойное ведро Западной Европы» — так сегодня именуют некогда воспетый в легендах Рейн. Индустриальные комплексы на его берегах все больше загрязняют воду. Ежегодно она несет в море около 20 млн. т солей, 13 тыс. т окислов цинка, около 2 тыс. т окислов меди и другие отходы. Их список содержит до тысячи наименований. Поэтому в ФРГ запрещено употреблять в пищу рыбу из Рейна и купаться в нем.

Серьезность проблемы, вызываемой растущим загрязнением главной водной артерии, подчеркивается тем, что из нее от Базеля до Амстердама водоочистительные станции поставляют питьевую воду для 20 млн. людей. Меры властей прирейнских стран, по признанию печати, не в силах остановить катастрофическое развитие событий.

Для древних римлян Тибр — одна из крупнейших итальянских рек — был символом жизни, плодородия. В античной скульптуре Тибр изображался в виде мужчины, держащего рог изобилия. Однако если сегодняшние скульпторы решили бы изобразить великую реку, используя символы древних, то из этого рога вместо плодов должна была высыпаться мертвая рыба, больные птицы, отравленные фрукты и овощи.

При существующем уровне отравления воды Тибра, пишет итальянская печать, никакая форма жизни в реке просто невозможна. Столичные власти заявляют, что делают все возможное, чтобы спасти Тибр. С 1970 г. закон преследует тех, кто сбрасывает в реку промышленные отходы. Но степень отравления Тибра продолжает возрастать.

На промышленных предприятиях сточные воды образуются в результате использования воды в технологическом процессе.

Более половины потребляемой воды расходуется промышленностью. Так, для производства 1 т стали требуется 25 м3 воды, резины — 4000, синтетического бензина — 50–90, уксуса — 100, соды — 300, искусственного шелка — 400, нитроцеллюлозы — 750, бумаги — 1000 м3.

Огромное количество воды потребляют современные крупные теплоэлектростанции. Только одна станция мощностью в 300 тыс. кВт расходует до 120 м3 воды в секунду или более 300 млн. м3 в год. Для получения 1 л нефти требуется 10 л воды, а на производство одной консервной банки овощей — 40 л; при убое скота и разделке туш тратится 500 л воды на одну голову; на 1 м3 молока затрачивается 5 м3 воды; на 1 т сахара при его производстве уходит 100 м3 воды. Только одной овощеконсервной промышленностью страны на технологические нужды ежегодно расходуется свыше 80 млрд. л воды.

Количество и степень загрязнения сточных вод зависят от вида перерабатываемого сырья и различных добавочных продуктов, уровня технологических процессов промышленных предприятий и ряда других факторов. Так, основными загрязнителями сточных вод предприятиями нефтяной промышленности является нефть и нефтепродукты. В сточных водах нефтеперерабатывающих заводов содержатся также серная кислота и сульфаты, сернистые щелочи и сероводород, смолы, растворимые газы и жирные кислоты.

Химическая промышленность в современных условиях представляет собой сложный комплекс производств. Их сточные воды содержат многочисленные примеси органических и неорганических соединений. К основным видам, дающим стоки, содержащие неорганические соединения, относятся заводы по производству минеральных удобрений, серной кислоты и соды. Сточные воды с органическими загрязнениями образуются в производствах нефтехимии, синтетического каучука, пластмасс, искусственного волокна, фармакологических, лакокрасочных, целлюлозно-бумажных, гидролизных и др. В производстве синтетического каучука вода используется в качестве растворителя, сорбента, компонента возгонки и разделения химических смесей и в других операциях, где происходит непосредственное соприкосновение с обрабатываемым сырьем. Здесь в основном сточные воды загрязняются спиртами, стиролом, этилбензолом, дивинилом, некалем и др.

Производственные сточные воды искусственного волокна загрязнены капролактамом, ацетоном, ацетилцеллюлозой, смолой, аммиаком, едким натром, содой, которые служат сырьем и вспомогательными продуктами. Сточные воды предприятий целлюлозно-бумажной промышленности характеризуются содержанием кислот, щелочей различных органических соединений древесины.

Нефть и нефтепродукты придают воде привкусы и запахи. Особенно чувствительна к нефтепродуктам рыба. Незначительное количество нефти придает мясу рыб неустранимые привкус и запах.

Фенолами загрязняются сточные воды коксохимических заводов, а также нефтехимических и других предприятий. При наличии фенолов в водоисточнике образуются хлорфенольные запахи в процессе хлорирования питьевой воды. Фенолы являются сильным нервным ядом для рыб, влияют на их запах и вкусовые качества.

Некаль, содержащийся в сточных водах производства синтетического каучука, уже в незначительных количествах ухудшает органолептические свойства воды: она приобретает специфический запах и для питья не пригодна.

Одним из самых распространенных загрязнений водоемов являются синтетические поверхностно-активные вещества (СПАВ). Эти вещества за рубежом называют детергентами. Они широко используются в различных отраслях народного хозяйства и в быту в качестве моющих средств. СПАВ плохо задерживаются на канализационных очистных сооружениях, способствуют появлению в воде обильной пены; придают воде запах и усиливают токсическое действие других загрязнителей воды.

В сточных водах могут содержаться не только специфические промышленные загрязнители, но и азот и фосфор. Эти химические вещества являются хорошей питательной средой для водорослей. Бурное развитие этих водорослей ниже места спуска таких сточных вод делает воду водоемов непригодной для хозяйственно-питьевых целей, вызывает гибель рыб вследствие попадания водорослей в их жабры и резкого снижения в водоеме содержания кислорода в период отмирания этих водорослей и их разложения с понижением температуры воды в осенне-зимний период.

На производствах черной и цветной металлургии вода используется для охлаждения металлургических печей и полученного металла, в качестве транспортирующей среды, для промывки и растворения реагентов, для обогащения сырья, топлива, очистки доменного газа и т. д. Здесь сточные воды загрязнены главным образом взвесью пустой породы, флотореагентами, ионами цветных и тяжелых металлов. Флотореагенты, в качестве которых в основном используются пенообразователи, придают воде неприятные запахи. Соединения тяжелых металлов отрицательно влияют на процессы самоочищения в водоемах, вызывают отравления гидробионтов (рыб и других).

В Японии за последние 20 лет сотни жителей р. Минамата отравились ртутью. Завод, принадлежащий химической компании «Тиссо», сбрасывал через канализацию в морской залив сточные воды, содержащие органические соединения ртути. Установлено, что эти соединения накапливались в рыбе, крабах и устрицах. При употреблении в пищу таких продуктов возникали симптомы поражения центральной нервной системы, у заболевших возникали параличи, потери слуха, зрения и др. Дети рождались парализованными, слепыми и глухими.

Помимо болезни «минамата» в Японии зарегистрирована еще болезнь «итай-итай» — отравление кадмием, который попадал в организм с загрязненной водой и пищей. Болезнь характеризуется появлением у больных острых болей в паховой и поясничной областях, в позвоночнике и суставах. Наблюдались деформации костей таза, нижних и верхних конечностей, нередко сопровождавшиеся сложными переломами.

Жители одного из районов бразильского штата Байя называют дьявольским недугом болезнь, которая сопровождается нестерпимыми болями во всем теле и приводит к размягчению костей. Как установлено, эта болезнь у населения возникает в результате использования воды р. Субае, куда сбрасываются промышленные отходы, содержащие свинец, кадмий и другие вредные для здоровья вещества. Основной источник загрязнения реки — это завод по производству свинца, принадлежащий иностранной компании.

Субае не единственный в Бразилии гибнущий водоем. Принадлежащие местным и иностранным владельцам химические, металлургические, сахарные заводы, текстильные и целлюлозно-бумажные фабрики губят все живое в реках и озерах во многих штатах страны.

До недавнего времени считалось, что главным источником загрязнения поверхностных вод пестицидами являются сточные воды промышленных предприятий, производящих эти ядохимикаты. Однако систематические наблюдения, проводившиеся в последние 15–20 лет различными контрольно-наблюдательными и научно-исследовательскими учреждениями СССР и других стран мира, показали, что определенные количества пестицидов поступают в водные объекты также и со стоком с сельскохозяйственных и лесных угодий, на которых они широко используются по целевому назначению. В связи с этим сельско- и лесохозяйственная деятельность стран, производящих и применяющих пестициды, стада рассматриваться как один из основных антропогенных факторов, влияющих на качество воды в природных водоисточниках.

Масштабы выноса пестицидов поверхностным и дренажным стоком с сельскохозяйственных угодий в водные объекты зависят от многих факторов, из которых важнейшими являются следующие: количество, способ и форма применения пестицидов; персистентность пестицидов, их растворимость в воде, способность сорбироваться почвой и мигрировать по ее профилю; тип почвы, степень ее эрозии и заселенности микроорганизмами; время между внесением пестицидов и выпадением стокообразующих осадков или сбросом возвратных вод орошения; объем и интенсивность выпадения осадков, объем поверхностного и подземного стока.

В соответствии с двумя последними факторами существенное влияние на вынос пестицидов с сельскохозяйственных угодий оказывает и вид землепользования. Наибольший вынос пестицидов наблюдается с орошаемых полей, в связи с чем на них применяются наименее персистентные пестициды.

Качество воды в реках и озерах подвержено изменению и под влиянием минеральных удобрений, которые во время дождя смываются в водоемы. По проведенной оценке в Швейцарии в результате интенсивного использования минеральных удобрений на сельскохозяйственных угодьях количество фосфора и азота, которые попали в открытые водоемы с обработанных полей, равно количеству всех загрязнений, внесенных неочищенными сточными водами.

Состав поверхностного стока зависит от санитарного состояния водосборной площади. Дождевые и талые воды характеризуются резким колебанием химического состава, имеют высокую бактериальную загрязненность, содержат яйца гельминтов. В некоторых случаях поверхностные стоки мало отличаются от хозяйственно-бытовых канализационных сточных вод. В ливневых водах содержатся большие концентрации нефтепродуктов.

Сброс так называемых термальных вод тепловыми электростанциями становится достаточно серьезным фактором влияния на санитарное состояние водоема. Основными водопотребителями на тепловой электростанции являются конденсаторы паровых турбин. Расход воды для мощных теплоэлектростанций достигает 100 м3/с и более. Как правило, после использования воду возвращают в реку подогретой до 30 °C. Известно, что в подогретой воде уменьшается содержание растворенного кислорода и она стимулирует развитие вредных синезеленых водорослей. Все эти изменения служат причиной ухудшения качественных показателей воды, используемой населением.

В такой воде не может находиться рыба и другие живые организмы.

Загрязнение водоемов происходит также со стоками с судов речного и морского флота. Особенно опасны сбросы промывных вод танкеров и подсланевых вод судов, загрязненных нефтью и маслами. Водоемы загрязняются в результате утечки нефти при ее погрузке и разгрузке, а также во время транспортировки. Известно, что при работе подвесных лодочных моторов в воду попадают летучие и нелетучие нефтепродукты, токсические и канцерогенные вещества. Расчеты показывают, что при работе двигателя в течение 190 ч (средняя норма за навигацию) в воду поступает до 10 кг нефтепродуктов. Объясняется это тем, что в отличие от судовых дизельных двигателей лодочный мотор имеет подводный выхлоп и, кроме того, работа мотора обычно не регламентирована в части выбросов.

Проблема защиты водоемов от загрязняющего действия маломерного флота, общая численность которого в стране уже превышает несколько миллионов единиц, не менее серьезна, сложна и актуальна, чем широко известная проблема автомобиля и городской среды.

Источником загрязнения водоемов является не только сброс сточных вод, но и затонувшая в процессе молевого сплава древесина. В результате загнивания этой древесины происходит повышенное потребление кислорода. Вода с пониженным содержанием кислорода оказывает губительное действие на рыб.

Необходимо также учитывать загрязнение водоемов при их рекреационном использовании. В период массового отдыха в водоем поступают значительные количества органики и биогенных веществ, причем в дни с пиковой рекреационной нагрузкой эти количества соизмеримы с количеством загрязнений, поступающим с очищенными бытовыми сточными водами города на 25–30 тыс. человек.

Массовый отдых является одной из причин ухудшения бактериологического состава воды. Это особенно неблагоприятно, если водохранилище одновременно служит источником питьевого водоснабжения населения.

Вода, которую мы пьем

Чтобы жить, человеку требуется в сутки, как уже говорилось, 2–3 л воды. В климатических условиях средней полосы нашей страны суточная потребность в воде составляет примерно 2,3–2,7 л.

В районах с жарким климатом потребность в воде увеличивается до 3,5–5 л в сутки. В Средней Азии при температуре воздуха 39–40° и низкой влажности людям, работающим на открытом воздухе, необходимо 6–6,5 л воды.

Значение воды не исчерпывается употреблением ее для питья и приготовления пищи. Вода тратится и на другие нужды: поддержание чистоты тела, жилых домов, культурно-просветительных и лечебных учреждений, для оздоровительных и спортивных мероприятий, для поливки зеленых насаждений, борьбы с уличной пылью и др. (табл. 10).

Расход воды на душу населения — один из основных показателей благосостояния народа. В Москве самый высокий в мире уровень потребления воды. И качество ее также занимает одно из первых мест. Если на жителя Лондона или Копенгагена приходится 250 л, Парижа — 450, то на каждого москвича — 700 л воды в сутки.

Об увеличении потребления воды говорят следующие цифры. В 1890 г. в Москве на одного человека расходовалось в сутки всего 11 л воды, в 1914 г. — 66, в 1922 г. — 119, в 1959 г. — 570, в 1979 г. — 700 л. Потребление воды на каждого жителя столицы продолжает увеличиваться. В перспективе суточное потребление воды возрастет до 1 тыс. л на человека.

Однако чрезвычайно важно не только количество воды, но и ее качество. Советские медики впервые установили предельно допустимые концентрации посторонних примесей в питьевой воде, которые вошли в государственный стандарт Советского Союза. Этот стандарт стал первым в Европе нормативом качества воды. Наш стандарт — самый строгий в мире, по нему контролируется качество водопроводной воды. Стандартная вода должна быть безопасной в эпидемическом отношении и безвредной по химическому составу.

В СССР в дополнение к ГОСТу на питьевую воду существует ГОСТ на выбор водоисточника, чего нет за рубежом и что обесценивает надежность водоснабжения.

Таблица 10. Нормативы хозяйственно-питьевого водопотребления

Степень благоустройства районов жилой застройки Водопотребление на одного человека, л/сут
Здания с водопользованием из водоразборных колонок (без канализации) 30—50
Здания с внутренним водопроводом и канализацией (без ванн) 125—150
Здания с водопроводом, канализацией, ваннами и водонагревателями, работающими на твердом топливе 150—180
То же, с газовыми нагревателями 180—230
Здания с водопроводом, канализацией и системой централизованного горячего водоснабжения 275—400
Известно, что водопровод принес горожанам не только радость. В конце XVIII — начале XIX в. газеты всего мира сообщали трагические новости о вспышках эпидемии холеры и брюшного тифа во многих городах Европы. Выяснилось: причиной тому стал поток плохо очищенной или совсем не обеззараженной воды из водопровода.

В 1892 г. знаменитый бактериолог Роберт Кох сделал важное открытие. Если в миллилитре воды можно насчитать не более 100 безвредных бактерий, она не опасна. При таком голодном пайке болезнетворным микробам-паразитам не выжить. Но если критическая сотня преодолена, надо срочно бить тревогу. Кох впервые в мире дал объективный критерий оценки качества воды. Этим нормативом пользуются до настоящего времени.

Прямое определение болезнетворных микробов — дело весьма сложное и трудоемкое. Поэтому вопрос о доброкачественности воды в бактериальном отношении решают косвенным методом: путем определения количества кишечных палочек в 1 л воды. Кишечная палочка — это микроб, постоянно обитающий в кишечнике человека и животных. Кишечная палочка не является возбудителем какого-либо заболевания, она безвредна для человека. Однако ее присутствие в воде свидетельствует о загрязнении выделениями людей и животных и о возможности заражения воды болезнетворными бактериями.

Чем больше кишечных палочек находится в воде, тем больше вероятность одновременного присутствия в ней болезнетворных микробов. Если нет кишечных палочек или их очень мало, то в воде нет и других микробов, вызывающих инфекционные заболевания. Согласно ГОСТ 2874—73 в 1 л питьевой воды допускается не более трех кишечных палочек, т. е. так называемый коли-индекс должен быть не более 3. Обратная величина (количество кубических сантиметров воды, в котором находится одна кишечная палочка) называется коли-титром. Безупречная в бактериальном отношении вода должна иметь коли-титр не менее 300.

Большую роль при оценке качества питьевой воды играют ее органолептические свойства: запах, вкус, прозрачность и цветность, которые человек определяет с помощью органов чувств. Питьевая вода не должна иметь постороннего запаха, привкуса, мутности и цвета, даже если вещества, их вызывающие, сами по себе безвредны. Человек обладает защитной реакцией — чувством отвращения к воде с необычным запахом и вкусом.

Содержащиеся в природной воде взвешенные вещества портят ее вкус. Кроме того, они служат благоприятной средой для развития болезнетворных бактерий. Поэтому нормы строго ограничивают содержание взвесей в воде. В водопроводной воде допускается их не более 1,5 мг/л.

В природной воде содержатся минеральные соли. Вода считается хорошей, если минерализация не превышает 1000 мг/л. Воды с большим содержанием солей относятся к соленым и не пригодны для питья. Очень малая минерализация воды (до 100 мг/л) тоже ухудшает вкус воды, а лишенная солей (дистиллированная) вода вообще считается вредной. Она способна нанести здоровью человека непоправимый ущерб (нарушается пищеварение и деятельность внутренней секреции).

ГОСТ 2874—73 отличается от прежнего еще и тем, что выделяет в отдельную группу химические включения, которые раньше всего обнаруживают органы чувств — обоняние, зрение. Так, микрочастицы меди придают воде некоторую мутность, железа — красноту. Однако повышенное содержание солей железа в воде придает ей неприятный болотистый вкус. После стирки в такой воде на тканях остаются ржавые пятна. Такие же пятна появляются на посуде, раковинах и ваннах. Допустимое содержание железа в воде — до 0,3 мг/л.

В малых концентрациях медь обнаруживается в подземных водах. Она не является кумулятивным ядом. Концентрация меди 1,5 мг/л ощутима на привкус. Предельно допустимая концентрация принята на уровне 1 мг/л.

В природных подземных водах цинк встречается в небольших концентрациях. Суточная потребность цинка не превышает 18 мг. Хронические отравления цинком не известны. При концентрации цинка 30 мг/л вода приобретает молочный вид, при 10 мг/л — она мутная. Металлический привкус исчезает при 5 мг/л. Эта концентрация является предельно допустимой.

Иногда в питьевой воде встречается много солей соляной и серной кислот (хлориды и сульфаты), придающие воде соленый и горько-соленый привкус. Употребление такой воды приводит к нарушению деятельности желудочно-кишечного тракта. Вода, содержащая более 350 мг/л хлоридов и более 500 мг/л сульфатов, считается неблагоприятной для здоровья.

С содержанием в воде солей кальция и магния тесно связано другое ее качество — жесткость. Вода, сильно насыщенная солями, причиняет много неудобств: в ней труднее развариваются овощи и мясо, уменьшается их питательная ценность, при стирке увеличивается расход мыла, накипь портит чайники и котлы, засоряет водопроводные трубы.

Высокая температура воздуха в жарком климатическом поясе приводит к усилению влагоотдачи внепочечным путем (потение, саливация), к обезвоживанию организма, а следовательно, и к повышению концентрации мочи, что, в свою очередь, может способствовать камнеобразованию. Вода повышенной жесткости распространена именно в южных районах страны. Эксперименты показали, что потребление жесткой питьевой воды животными, содержащимися в условиях повышенной температуры внешней среды (30°), вызывает еще большее увеличение камнеобразования у подопытных животных.

Избыточное содержание в питьевой воде солей кальция и магния нарушает каллоидно-кристаллоидное равновесие мочи и способствует возникновению мочекаменной болезни. В реальных жизненных условиях заболевание мочекаменной болезнью чаще всего, вероятно, вызывается не какой-либо одной причиной, а несколькими. Однако солевой состав питьевых вод — один из факторов, способствующих развитию этой болезни.

Таким образом, жесткость питьевой воды на уровне 7 мг*экв/л не вызывает возражений. Исследования показали, что употребление воды с жесткостью на уровне 7 и 10 мг*экв/л не оказывает влияния на липидный обмен при длительном введении холестерина и, следовательно, не может способствовать развитию атеросклеротических изменений артерий. Допустимый уровень общей жесткости равен 7 мг*экв/л (А. А. Гаголи, 1972 г.).

В природных подземных водах марганец содержится в виде бикарбонатов и других хорошо растворимых солей. Вместе с тем перманганат калия (KMnO4) применяют в практике водоснабжения как реагент: он хорошо устраняет посторонние привкусы и запахи, обусловленные различными органическими соединениями, а также снижает содержание железа и марганца. Перманганат калия употребляют и как альгицидное средство, обеспечивающее гибель водорослей, которые забивают фильтры или вызывают появление запахов и привкусов в воде. Помимо дезодорирующего и альгицидного действия, перманганат калия проявляет бактерицидный эффект.

В технологическом процессе семивалентный марганец переходит в двухвалентную и четырехвалентную форму. Четырехвалентный марганец практически нерастворим в воде и задерживается на фильтрационных установках, а остаточные количества двухвалентного марганца могут обнаруживаться в питьевой воде.

Изучение влияния семивалентного иона марганца на органолептические свойства воды вскрыло ведущий признак в этом отношении — изменение окраски воды. По этому признаку пороговой, определенной в столбе воды высотой 20 см, является концентрация перманганата калия 0,1 мг/л. При концентрации марганца в воде 0,5 мг/л опущенная в нее ткань после стирки приобретает слабо выраженный коричневый оттенок. При концентрации 0,1 и 0,05 мг/л разницы между контрольными и обработанными образцами ткани не было. Допустимое остаточное количество марганца в воде при полном переходе из семивалентного состояния в четырех- и двухвалентное и с учетом его неблагоприятного действия на белье не должно превышать 0,1 мг/л (по иону Mn).

Токсичность марганца не зависит от валентности иона. Недействующей концентрацией всех соединений марганца (по влиянию на здоровье людей) является концентрация 2 мг/л в пересчете на ион Mn. Более высокие концентрации марганца вызывают изменения со стороны высшей нервной деятельности, усиливают накопления фосфора в костях, уменьшая его выделения с мочой. Кроме этого, происходит снижение активности ферментов холинэстеразы и церулоплазмина крови. При цитогенетических исследованиях обнаружено увеличение процента митотической активности клеток костного мозга (C. А. Шиган, Б. Г. Витвицкая, 1971).

На водопроводных станциях в качестве коагулянта широко применяется сернокислый алюминий. При коагуляции избыточными дозами этого коагулянта мутность воды может возрастать. При содержаний остаточного алюминия в воде на уровне 0,5 мг/л мутность воды не изменяется. Избыточные концентрации алюминия придают воде неприятный вяжущий привкус. Пороговые концентрации определены на уровне 0,6–0,8 мг/л.

Пороговая концентрация, установленная по изменению вкуса воды, для хлористого алюминия равна 0,5 мг/л по Al. Эта же концентрация не изменяет прозрачность воды. Предельно допустимая концентрация остаточного содержания алюминия в питьевой воде равна 0,5 мг/л (А. А. Петина, 1965 г.).

Для защиты водопроводных труб от коррозии и умягчения жестких вод применяются гексаметафосфат и триполифосфат натрия. При внесении в водопроводную воду указанных веществ в ней образуются малорастворимые соединения кальция и магния, которые сорбируются отлагающимися на стенках труб коррозионными образованиями, в результате чего последние уплотняются и изолируют металл от воды.

Гексаметафосфат и триполифосфат натрия в концентрациях, которые предполагается использовать для постоянной обработки питьевой воды (10–20 мг/л), не влияют на ее запах, привкус, цветность и активную реакцию. Оба вещества в концентрации выше 5 мг/л при нагревании и кипячении водопроводной воды образуют стойкую муть. Вещества не обладают выраженной токсичностью и кумулятивными свойствами. Лимитирующий показатель вредности гексаметафосфата и триполифосфата натрия при нормировании их в питьевой воде — органолептический: образование мути при нагревании. В качестве гигиенического норматива принята концентрация обоих веществ на уровне 3,5 мг/л.

В ряде случаев наличие в воде тех или иных микроэлементов привлекало к себе внимание как возможная причина массовых заболеваний неинфекционной природы.

В частности, повышение или уменьшение количества поступающего в организм микроэлемента нарушает нормальное течение физиологических процессов и приводит к возникновению патологических состояний.

Интенсивное изучение фтора начато в 30-х годах, когда была установлена взаимосвязь его содержания в питьевой воде и поражении зубов у местных жителей. Затем был вскрыт другой интересный факт: при содержании фтора в питьевой воде 1 мг/л выявлена наименьшая распространенность кариеса. Это обстоятельство, а также изучение физиологической потребности во фторе и явилось обоснованием для искусственного обогащения питьевой воды препаратами фтора.

В нашей стране фторирование питьевой воды осуществляется в 86 городах, где около 13 млн. жителей постоянно получают фторированную воду.

Ценные наблюдения были проведены в Мончегорске. Данные местных стоматологов свидетельствовали о том, что кариес у детей встречался здесь в два-три раза чаще, чем в других районах страны. Через десять лет после введения в строй фтораторной установки врачи провели повторное обследование. Число кариозных зубов у детей семилетнего возраста, родившихся и постоянно проживающих в Мончегорске, сократилось на 58 %. Одновременно резко уменьшилось количество детей, страдающих так называемым множественным кариесом. Сходные данные получены и в английском г. Бирмингеме.

Сокращение распространенности и интенсивности кариеса после длительного использования фторированной воды дает и определенный экономический эффект. В частности, в Мончегорске подсчитано, что общая экономия при санации школьников и дошкольников за счет уменьшения объема лечебных мероприятий и расхода пломбировочных материалов составила за 1976 г. 33,643 тыс. руб. Иными словами, 1 руб. затрат на фторирование дает 6,2 руб. экономии государственных средств. Кроме того, уменьшение объема высвобождает врачей-стоматологов и вспомогательный персонал, что позволяет повысить качество лечения зубов, сконцентрировать усилия на профилактике.

При повышенных концентрациях фтора развивается другой недуг (особенно у детей) — флюороз. Зубы темнеют, крошатся и ломаются. Признак флюороза — пятнистость зубной эмали. Чтобы предупредить это заболевание, при централизованном водоснабжении устанавливают обесфторивающие установки. При водоснабжении небольших населенных пунктов для уменьшения количества фтора в воде используют метод смешения подземных вод из богатых фтором водоносных горизонтов с водой, имеющей незначительную концентрацию фтора. Оптимальное для человека содержание фтора составляет в среднем 0,7–1,5 мг/л, причем его концентрация в воде должна поддерживаться на уровне 70–80 % от нормативов, принятых для каждого из четырех климатических районов страны (первый и второй климатические районы — 1,5 мг/л, третий — 1,2 мг/л, четвертый — 0,7 мг/л).

Из других микроэлементов, вызывающих заболевания у человека, можно назвать свинец и мышьяк. Опасны случаи отравления свинцом при использовании свинцовых труб для водопровода. В Советском Союзе применение свинцовых труб запрещено законом.

Отравления мышьяком известны при употреблении питьевой воды в районах разработки полиметаллических руд с повышенным содержанием в них мышьяка. В Канаде в 1934 г. наблюдались отравления при использовании для питья воды из колодцев, которые питались водой из известняков, содержащих мышьяковистое железо.

В принятом в СССР стандарте для питьевой воды установлена предельно допустимая концентрация мышьяка (0,05 мг/л).

Г. Н. Красовский и др. (1978 г.) изучили влияние свинца на организм. Для установления безопасных концентраций свинца в воде с учетом его общетоксического, гонадотоксического и мутагенного эффектов, исследователи провели кратковременные и длительные эксперименты. Наименьшей концентрацией свинца, при которой проявлялись общетоксический и гонадотоксический эффекты, оказалась доза 0,05 мг/л. Свинец можно рассматривать как слабый мутаген: доза в 0,05 мг/л вызывает незначительное увеличение хромосомных аберраций. Концентрация свинца 0,03 мг/л таких изменений не дает.

В некоторых водоисточниках Прибалтики, Украины, Западной Сибири, Казахстана отмечено повышение содержания бора — свыше 2–6 мг/л. Как известно, бор относится к соединениям, обладающим широким спектром действия на различные системы и функции организма, в том числе и на центральную нервную систему. A. Л. Борисов установил выраженный гонадотоксический эффект бора в условиях перорального поступления в течение 30 дней. Лимитирующим показателем вредности при допустимой концентрации бора в питьевой воде является его влияние на здоровье населения.

Гигиеническим нормативом считается концентрация бора, равная 0,5 мг/л.

В последнее время на водопроводных станциях в качестве коагулянта широко применяется сернокислый алюминий. При коагуляции избыточными дозами этого вещества может возрастать мутность воды, причем она сохраняется даже при концентрации 0,5 мг/л, которая считается предельно допустимой для питьевой воды. Избыточные концентрации алюминия придают воде неприятный вяжущий привкус.

Качества питьевой воды длительно сохраняются благодаря ее обогащению ионами серебра (в концентрации 0,05—0,4 мг/л). Не удивительно, что использование серебра в фармакологической практике породило понятие о его безвредности. Между тем в литературе описаны поражения организма, вызванные препаратами серебра и именуемые аргириями. В хронических опытах на животных концентрации ионов серебра на уровне 5 мг/л и 0,5 мг/л снижали иммунологическую активность организма (по показателю фагоцитоза); отмечались изменения сосудистой, нервной и глиозной ткани головного и спинного мозга. Эти дозы нарушали условнорефлекторную деятельность крыс. Концентрации серебра 0,05 мг/л и 0,005 мг/л подобных изменений не вызывали. Употребление воды с концентрацией серебра 20 мг/л оказывает неблагоприятное воздействие на процессы синтеза и распада аминокислот, что может отрицательно сказываться на синтезе белков и ферментов.

Для определения мутагенного эффекта была исследована вода, в которой содержалось азотнокислое серебро (0,02 мг/л). В результате была установлена предельно допустимая концентрация ионов серебра в воде — 0,05 мг/л.

Долгое время присутствие в воде нитратов рассматривали как косвенный признак бытового загрязнения, так как нитраты являются конечным продуктом распада органических веществ, попадающих в водоисточник главным образом с загрязнением. Например, в загрязненных колодцах их содержание достигает 100 мг/л и более. Однако повышенные концентрации нитратов были обнаружены и в природных подземных водах, в которых нитраты образуются в результате восстановительных процессов, протекающих в почве и воде.

При включении в ГОСТ 2874—73 «Вода питьевая» допустимого содержания нитратов опирались на результаты отечественных и зарубежных исследований о возникновении водно-нитратной метгемоглобинемии. Согласно современной теории, нитраты в кишечнике человека восстанавливаются в нитриты под влиянием обитающих там бактерий. Всасывание нитритов ведет к образованию метгемоглобина и к частичной инактивации гемоглобина. Таким образом, в основе заболевания лежит та или иная степень кислородного голодания, симптомы которого проявляются в первую очередь у детей, особенно грудного возраста, которые болеют этой формой преимущественно при искусственном вскармливании (разведении сухих молочных смесей водой, содержащей нитраты) или при употреблении этой воды для питья. Дети старшего возраста менее подвержены этому заболеванию, так как у них сильнее выражены компенсаторные механизмы. Проявление болезни у них менее тяжелое.

Употребление воды, содержащей 2—11 мг/л нитратов, не вызывает повышение в крови уровня метгемоглобина, тогда как использование воды с концентрацией 50— 100 мг/л резко его увеличивает, причем растет и число лиц с повышенным содержанием метгемоглобина. Повышение уровня метгемоглобина в крови тем больше, чем моложе ребенок (X. Ш. Капанадзе, 1961 г.). При поступлении нитратов с питьевой водой в концентрации 105 мг/л в организме теплокровных животных снижается иммунологическая реактивность и нарушается способность к формированию условнорефлекторной деятельности. Меньшие концентрации нитратов в питьевой воде (не превышающие 40 мг/л) этих изменений не вызывали (А. В. Иванов и др., 1975).

Концентрация нитратов на уровне 10 мг/л (в пересчете на N) является безопасной и принята в качестве предельно допустимой в питьевой воде.

Бериллий довольно широко распространен в природе. Он содержится в минералах, горных породах, живых организмах, а также в некоторых природных водах. Бериллий является ядом общетоксического действия с высокой степенью кумуляции, приводящим к поражению дыхательной, нервной и сердечно-сосудистой систем. Он оказывает угнетающее действие на некоторые ферменты организма и состояние красной крови. Характерной особенностью бериллия является длительный латентный период проявления интоксикации и отсутствие прямой корреляции между дозой действующего вещества, продолжительностью контакта и реакцией организма. Изучение хронического влияния малых концентраций бериллия определило его пороговую концентрацию, вызывающую функциональное нарушение эритропоэза в костном мозгу, изменения состояния красной крови и условнорефлекторной деятельности белых крыс. Она оказалась равной 0,002 мг/л. В качестве допустимого содержания бериллия в питьевой воде была предложена концентрация 0,0002 мг/л, которая не действовала вредно на организм животных (Л. А. Сажина, 1965 г.).

Молибден встречается в почвах, растениях, организме животных, а также в природных водах. В некоторых районах Армянской ССР подземные воды выявили повышенное содержание молибдена. Миграция молибдена в водах часто происходит в виде иона молибденовой кислоты. Молибден выделяется из организма довольно быстро и его кумулятивные свойства выражены слабо. Молибден: оказывает угнетающее влияние на активность костной фосфатазы, вызывает уменьшение содержания меди в организме. При избытке молибдена у животных и человека усиливается синтез ксантиноксидазы и образование мочевой кислоты, что у людей ведет к заболеванию «молибденовой подагрой». При хронической затравке животных молибден вызывает выраженные функциональные сдвиги в организме, в частности, увеличение количества сульфгидрильных групп в сыворотке крови и печени, а также уменьшение количества витамина С в печени. В качестве допустимого содержания молибдена в питьевой воде предложена концентрация на уровне 0,5 мг/л (Т. А. Асмангулян, 1965 г.).

В некоторых географических областях (биогеохимических провинциях) отмечено повышенное содержание селена. Например, в открытых водоемах биогеохимических селеновых провинций США содержание селена достигает 0,2 мг/л, а в подземных водах — до 9 мг/л. Здесь зарегистрированы заболевания людей и животных, вызванные повышенным содержанием селена во внешней среде. Селен входит в VI группу периодической системы элементов и по своим химическим свойствам занимает промежуточное положение между серой и теллуром. Согласно современным представлениям, селен обладает политропным действием на организм с преимущественным поражением печени, почек, костного мозга и центральной нервной системы. В основе токсического действия селена лежит блокада тиоловых групп ряда биологических субстратов — таких, как глютатион, цистеин и др.

Детальные исследования процесса влияния селена на животных показали, что его концентрация, равная 0,0001 мг/л, не вызывает статистически достоверных изменений ни по одному экспериментальному тесту. Эта же доза селена не выявила структурных изменений внутренних органов животных и при хроническом действии. В результате доза 0,0001 мг/л была принята в качестве гигиенического норматива селена в питьевой воде (H. П. Плетникова, 1970 г.).

Стабильный стронций — Sr — распространен в природных водах, причем его концентрации колеблются в широких пределах (от 0,1 до 45 мг/л). При действии больших концентраций стронция изменения в организме проявляются впервую очередь со стороны минерального обмена и ферментативных процессов в костной ткани. Он не обладает резко выраженными кумулятивными свойствами, но имеет довольно широкий спектр действия при длительном поступлении в организм.

В конце 70-х годов советские ученые провели комплексное гигиеническое исследование по оценке влияния стабильного стронция питьевых вод в условиях хронического эксперимента на животных и при обследовании больших контингентов детей и подростков, проживающих в гидрогеохимическом регионе с повышенным содержанием стронция в подземных водах. В результате исследователи пришли к выводу: длительное употребление питьевой воды, содержащей стронций на уровне 7,0 мг/л, не вызывает функциональных и морфологических изменений как на уровне тканей и органов, так и целостного организма человека. Эта величина была рекомендована в качестве норматива стабильного стронция для питьевой воды.

Радиоактивный химический элемент уран относится к VI группе периодической системы. Он является самым тяжелым из химических элементов, принимающим участие в строении земной коры, и обладает сравнительно повышенным распространением среди элементов конца таблицы Д. И. Менделеева. По образному выражению В. И. Вернадского, уран является составной частью биосферы, находится во всех растительных и животных организмах в ультрамикроскопических количествах, его относят к нормальным компонентам протоплазмы клеток.

В связи с большим периодом полураспада (2,47—4,51 109 лет) уран обладает малой радиоактивностью. Так, 2800 кг природного урана по радиоактивности равны 1 г Ra226, что составляет 1 кюри.

Токсичность соединений урана находится в прямой зависимости от их растворимости. Все соединения его при контакте с биологическими средами переходят в раствор, но по скорости этого процесса они делятся на легкорастворимые (например, азотнокислые и углекислые соли) и малорастворимые (например, окислы урана). Экспериментальные исследования показали, что при длительном воздействии на уровне 60 мг/л уменьшается содержание аминокислот и хлоридов в моче, что свидетельствует о нарушении канальцевой реабсорбации под влиянием урана. При хроническом влиянии урана в концентрациях 6 и 60 мг/л у белых крыс замечены задержка полового созревания и нарушение ритма полового цикла.

Уровень активности щелочной фосфатазы сыворотки крови экспериментальных животных возрос к 11-му месяцу затравки ураном в концентрациях 6 и 60 мг/л, что связано с ее поступлением в кровь из внутренних органов. Увеличение активности кислой фосфатазы отмечено в гемогенате селезенки кроликов, получавших уран на уровне 30 мг/л. Таким образом, изменения со стороны ферментных систем — первое звено в реакции на хронические воздействия малых концентраций элемента.

При воздействии урана на уровне 30 и 60 мг/л у животных уменьшалось содержание нуклеиновых кислот в тканях почек, печени и селезенки по сравнению с контрольными животными. Это указывает на угнетение обмена нуклеиновых кислот. К моменту исследования накопление урана в почках белых крыс, получавших его на уровне 60 мг/л, составляло 0,004 мг, причем доза облучения тканей почек равнялась 7 мбэр/нед. Эти данные также подтверждают: уран оказывает воздействие на организм как химический токсический элемент.

Последующие исследования позволили определить дозу урана, не вызывающую изменений в организме животного. Ею оказалась концентрация 1,7 мг/л, принятая в дальнейшем в качестве норматива для питьевой воды.

В настоящее время на водопроводных станциях очистки воды в качестве флокулянта используется полиакриламид (ПАА). В связи с этим возникла необходимость разработки норматива остаточного количества этого вещества в питьевой воде. ПАА — высокомолекулярный синтетический линейный мономер, в котором часть амидных групп замещена на группы алюминиевой и кальциевой солей полиакриловой кислоты. Он не обладает запахом и привкусом, хорошо растворяется в воде. ПАА относится к веществам с низкой токсичностью и невыраженными кумулятивными свойствами. Концентрацию ПАА в 30 мг/л можно рассматривать как пороговую, при которой происходят первоначальные изменения адаптационных реакций организма. Концентрация 2 мг/л не вызывала изменений у подопытных животных ни по одному из использованных тестов, поэтому может рассматриваться как недействующая. Она считается предельно допустимой в питьевой воде (Н. А. Рахманина, 1967 г.).

Допустимые концентрации химических веществ, являющихся промышленными и сельскохозяйственными загрязнениями водоисточников, не должны превышать нормы, установленные Министерством здравоохранения СССР для источников централизованного водоснабжения. В настоящее время утверждены предельно допустимые концентрации для 633 вредных веществ в воде водоемов.

Одним из важных результатов теоретической и экспериментальной разработки принципов гигиенического нормирования является установление принципа суммации действия малых концентраций веществ (с одинаковым характером действия), присутствующих в воде. При обнаружении в воде нескольких веществ (за исключением фтора, нитратов, радиоактивных веществ,) сумма концентраций, выраженная в долях от максимально допустимых концентраций каждого вещества в отдельности, не должна превышать единицы. В стандарте подробно указано, как, где и когда проводить лабораторно-производственный контроль качества питьевой воды. Предусмотрен также и общегосударственный контроль, который осуществляют санитарно-эпидемиологические службы Министерства здравоохранения СССР.

Без всякого преувеличения можно сказать, что высококачественная вода — одно из непременных условий сохранения здоровья людей. Вкусная вода — истинный земной дар. И на охране ее стоит государственный стандарт.

Фабрики питьевой воды

Любой школьник знает, что такое водопровод и для чего он служит. Без него немыслима жизнь ни одного города, фабрики, завода. А вот когда люди начали заниматься проблемой «доставки» воды непосредственно к себе в жилища?

История водопровода насчитывает несколько тысячелетий. Еще в Древнем Египте рабы вырывали довольно глубокие колодцы, снабженные простейшими механизмами для подъема воды. Вода подавалась во дворец фараона и его придворных по глиняным, деревянным или даже металлическим (медным или свинцовым) трубам. В античном мире сооружались водопроводы длиной в несколько десятков километров. До наших дней сохранились еще акведуки, «сработанные рабами Рима». В Западной Европе лишь с XII–XIII вв. начинают появляться водопроводы в виде открытых лотков, деревянных труб или каменных подземных каналов.

На Руси водопроводные сооружения появились раньше, чем в Европе. Так, в летописях XI–XII вв. уже упоминается водопровод, построенный для «Ярославова дворища». Московские князья пили воду из р. Москвы или Неглинной, за которой надо было спускаться с высокого холма. Слуг у князей было достаточно, чтобы обеспечить себя водой, но как быть, если враг у стен города? Для этого случая в начале XIV в. по приказу Ивана Калиты проложили от реки в глубь берега, за стены Кремля, дубовую трубу и подвели воду к глубокому колодцу-тайнику, из которого уже было нетрудно достать воду бадейками.

Когда начали строить Кремль из кирпича, в башнях стали устраивать тайники-водопроводы. Тайники были построены под Свибловой башней (позднее она стала называться Водовзводной) и под Собакиной (ныне Арсенальной).

В начале XVII в. был построен новый кремлевский водопровод. Это было уже довольно сложное сооружение. Вода сначала самотеком поступала по специальной галерее в колодец (диаметром 5 м), находившийся в подвале Свибловой башни. С помощью «водяного взвода» (подъемной машины с конным приводом, построенной часовым мастером Христофором Головеем) вода подавалась в бак на башне, откуда по свинцовым трубам проводилась в «водовозную палатку» (что-то вроде регулирующего резервуара). Отсюда вода уже распределялась по дворцам, поварням, поступала в царские баки. Этой же водой поливались сады в Кремле. Но все эти водопроводы строились для княжеских или царских дворов. Население же города обеспечивалось водой с помощью водовозов и водоносов.

Потребность в воде резко возросла в начале XIX в., когда в России усилился процесс роста городов, в которых развивалась промышленность, увеличивалась численность населения. Самотечные водопроводы стоили дорого, причем зачастую их постройка была просто невозможна из-за неподходящих топографических и гидрогеологических условий. В этой связи возникла необходимость бурения большого числа артезианских скважин и использования для питья подземной воды.

В 1804 г. завершилась постройка Мытищинского водопровода. Спустя полвека, в 1861 г., начал действовать Петербургский городской водопровод. Всего в дореволюционной России водопроводы имелись в 215 городах (около 20 % из общего числа).

Ныне в каждом городе нашей страны есть водопровод.

Выполнение планов жилищно-коммунального и промышленного строительства девятой и десятой пятилеток, повышение благоустройства жилищ и населенных мест вызвали существенное увеличение потребностей в воде и соответствующее развитие систем водоснабжения. К 1977 г. общая мощность систем водоснабжения населенных мест СССР возросла за 10 лет почти вдвое и составляет 73–74 млн. м3/сут в среднем. Примерно так же увеличился и фактический отпуск воды этими системами, достигший в среднем 60 млн. м3/сут (против 32 млн. в 1967 г.). Среднее удельное водопотребление на одного жителя в сутки в 1977 г. составляло 370 л (с учетом расхода воды промышленностью, получающей воду из городских водопроводов) и около 240 л — без учета этих расходов, т. е. собственно на хозяйственно-питьевые нужды населения.

С вводом в эксплуатацию канала Днепр — Донбасс существенно улучшилось водоснабжение промышленных районов Донбасса. Построены деснянский водопровод для Киева производительностью 560 тыс. м3/сут, система водоснабжения Кишинева, рассчитанная на подачу 200 тыс. м3/сут воды из Днестра. Сооружены две мощные системы подачи воды в Баку: Куринский водопровод (3,5 м3/сут) и Джейран-батанская система (3 м3/сут). В Казахской ССР за последние годы проведены значительные работы по улучшению водоснабжения сельских населенных пунктов. Закончено строительство Ишимского и Булаевского групповых водопроводов в северных областях Казахстана. Продолжается строительство Пресновского, Беловодского и Нуринского групповых водопроводов. Это позволило обеспечить централизованным водоснабжением более 700 населенных пунктов. В 1977–1980 гг. в Казахстане построено 28 групповых водопроводов сельскохозяйственного назначения общей протяженностью более 4 тыс. км.

Строится Новосибирский групповой водопровод. Общая протяженность его сетей составит 5 тыс. км. Он заменит десятки тысяч колодцев более чем в 600 селах и поселках 16 районов Новосибирской и Омской областей. Эту сеть напоят Новосибирское водохранилище, р. Иртыш, а также Нижне-Чулимское и Карасукское месторождения подземных вод.

Значительный прирост производительности водопроводов обеспечен за счет подземных источников водоснабжения. При этом увеличено искусственное пополнение запасов подземных вод. Водозаборы с инфильтрационными бассейнами и скважинами будут построены в Калуге, Курске, Сочи, Красноводске, некоторых городах Западной Сибири, Украины, Прибалтики и в других районах.

Особенно интенсивно развивалось водоснабжение столицы нашей Родины. В год Великой Октябрьской социалистической революции в город подавалось 170 тыс. м3/сут воды. Вода шла в основном в центральную часть города, большая часть населения пользовалась водой из 140 водоразборов.

В первые годы Советской власти начались работы по восстановлению и развитию водопровода. Водопроводные сети потянулись в рабочие районы Москвы. В восточной части города в 1929–1933 гг. для обеспечения населения водой были построены узлы артезианских скважин. Тогда же для покрытия дефицита воды в западной и центральной частях Москвы было решено в самые короткие сроки увеличить мощность Рублевской водопроводной станции до 260 тыс. м3/сут, начать строительство Черепковских очистных сооружений, плотины около Рублева и создать водохранилище на р. Истре. Уже в 1935 г. эта система обеспечила ежедневную подачу в город 450 тыс. м3 воды.

Однако проблема водоснабжения города в целом еще не была решена. Важным событием, определившим перспективу Московского водопровода, явился июньский Пленум ЦК ВКП(б) 1931 г. Пленум принял решение о строительстве канала Волга — Москва с пропускной способностью 75 м3/сут и трех водопроводных станций, позволяющих довести к 1945 г. общую производительность Московского водопровода до 1,86 млн. м3/сут.

В июле 1937 г. были введены в эксплуатацию канал Волга — Москва и Восточная водопроводная станция. С пуском этих сооружений в Москве была создана надежная система водоснабжения.

От московского Северного порта до Большой Волги (128 км) тянется трасса канала им. Москвы. Это гидротехническое сооружение — самое большое в мире. Наш канал длиннее Панамского на 47, Кильского — на 29, Манчестерского — на 71 км. Построен он советскими людьми за кратчайший срок — 4 года и 8 месяцев, в то время как Суэцкий канал сооружался 10, а Панамский — свыше 30 лет. Благодаря каналу, волжские воды подняли уровень р. Москвы и улучшили ее санитарное состояние.

Канал соединил многоводную Волгу с Москвой и сделал ее портом пяти морей: Белого, Балтийского, Азовского, Черного, Каспийского. История водотранспортного строительства не знает другого примера превращения города, стоявшего на мелководной реке, в порт пяти морей. За 40 лет по голубой артерии прошло 3,5 млн. судов, в своих трюмах они перевезли 300 млн. т грузов; насосные станции перекачали 54 млрд. м3 воды.

В 1935 г. был принят Генеральный план реконструкции столицы. Развитие всех отраслей городского хозяйства было поставлено на прочную основу. Частью первого генплана Москвы стал план развития системы водоснабжения.

Дальнейшее развитие водопроводно-канализационного хозяйства Москвы прервала Великая Отечественная война. В военные годы Московский водопровод надежно обеспечивал население и промышленность водой. За бесперебойное водоснабжение столицы и оборонной промышленности в военное время Рублевская водопроводная станция награждена орденом Ленина, Восточная станция — орденом Отечественной войны I степени; 12 работников Московского водопровода получили ордена и медали.

Послевоенные годы для Московского водопровода стали периодом бурного развития: были созданы новые мощные источники, построены крупные водопроводные станции, в несколько раз увеличилась протяженность сетей и магистралей. Неуклонно возрастал технический уровень Московского водопровода.

В 1952 г. вступила в строй одна из крупнейших станций города — Северная. В последующие годы Восточная и Северная водопроводные станции за счет реконструкции и расширения очистных сооружений, насосных станций, совершенствования технологии, модернизации оборудования и строительства новых водоводов значительно увеличили свою производительность. Уже в середине 60-х годов Восточная и Северная станции подавали в город 2,2 млн. м3/сут воды.

В эти же годы происходит интенсивное развитие системы водохранилищ Москворецкого источника. Построены Можайское, Рузское и Озернинское водохранилища общей емкостью более 600 млн. м3. Создание новых водохранилищ позволило в 1964 г. открыть еще одну водопроводную станцию — Западную, значительно улучшившую водоснабжение южной и юго-западной частей города. В этот же период второе рождение получила первая Московская водопроводная станция — Рублевская. Одновременно шло интенсивное развитие водопроводных сетей и магистралей в городе, протяженность которых в настоящее время составляет более 6400 км.

Производительность Московского водопровода за 60 лет возросла в 30 раз и достигла в 1977 г. более 5,1 млн. м3/сут.

В том же году пущен в эксплуатацию новый блок очистных сооружений Северной водопроводной станции производительностью 600 тыс. м3/сут и на 170 тыс. м3/сут увеличена производительность Рублевской и Западной водопроводных станций.

Спустя год завершилось строительство первой очереди Ново-Западной водопроводной станции Москвы (около 400 тыс. м3/сут), расположенной неподалеку от Киевского шоссе, рядом с совхозом «Московский». Более сорока гектаров отведено для создания комплекса очистных сооружений, складов, водозаборов, трубопроводов — всего сложного хозяйства, которое призвано стать новым питьевым источником города. В Генеральном плане развития столицы Ново-Западная станция наряду с уже действующими Рублевской, Восточной, Северной занимает ключевое место в системе городского водоснабжения. Ее проект предусматривает подачу 800 тыс. м3/сут воды в новые жилые районы: Орехово-Борисово, Ясенево, Бирюлево, Чертаново, Зюзино. Пока эти районы снабжает старая, Западная водопроводная станция.

Впервые в отечественном гидростроении на Ново-Западной станции сооружены трехъярусные отстойники. Три резервуара-отстойника, где проводится одна из основных операций по очистке воды, размещены один над другим, как этажи. Это значительно сократило площади, необходимые для размещения сооружений. Новые конструктивные разработки применены на трубопроводах. Весьма эффектны корпуса Ново-Западной станции. Бело-голубые здания ее отстойников, смесителей, фильтров, насосных легки и нарядны. Внутри станции светлые, просторные залы управления. В настоящее время сооружается вторая очередь Ново-Западной, а готовые корпуса станции уже соединили с р. Москвой две нитки 17-километрового трубопровода. По этим трубам (диаметр каждой 1,5 м) речная вода, прежде чем добраться до сооружений станции, пройдет несколько стадий тщательной обработки, а затем уже чистым питьевым потоком направится в город.

Москва получает питьевую воду из 12 подмосковных хранилищ. Половина их расположена в системе канала им. Москвы, другая — в верховьях р. Москвы.

Суммарное водопотребление промышленных и жилых районов столицы составляет 5,1 млн. м3/сут. Из этого расхода 60 % покрывается за счет собственных водных ресурсов, т. е. рек, озер и водохранилищ, которые находятся па территории области, остальные 40 % пополняются за счет бассейна р. Волги и недавно введенной в эксплуатацию Вазузской гидротехнической системы. Расчеты показывают, что в перспективе водопотребление Москвы и Московской области значительно возрастет, а к 2000 г. почти удвоится.

На очереди создание еще одной системы — Ржевской. Новый гидротехнический узел обводнит преимущественно северные и северо-восточные районы области. В перспективе предусмотрено создание крупного Юхновского водохранилища, которое будет питать южную систему каналов и искусственных озер. Строительство части этой системы уже началось: сейчас ведутся гидротехнические работы на будущих Подольском и Верхне-Пахринском водохранилищах. Огромное значение имеет переброс южных вод из р. Оки и регулирование стока Верхне-Угринского района водосбора. Реорганизация водной системы совместно с современными методами санитарной охраны позволит не только обеспечить бесперебойную подачу воды населению, но и улучшить отдых трудящихся в живописных местах Подмосковья.

Чтобы напоить город водой, ее днем и ночью перерабатывают водопроводные станции. Сотни людей, тысячи механизмов трудятся над тем, чтобы город ни минуты не испытывал недостатка воды, которая горожанину дается удивительно легко — достаточно лишь повернуть ручку водопроводного крана. Не все представляют себе, какой долгий и сложный путь от плесов реки до городских квартир проходит вода, прежде чем станет чистой, питьевой.

Очистка воды начинается еще в водоеме. Иногда русло реки используют как естественный фильтр для очистки воды, поступающей в систему городского водопровода. Как известно, пласты песка и гравия обладают прекрасной фильтрующей способностью. На берегу закладывают глубокую шахту. В ней устанавливают мощные гидравлические домкраты, с помощью которых пронизывают специальными стальными трубами речное дно. Образуется так называемый лучевой водозабор.

Вода из поверхностного источника (реки и озера) через водозабор поступает в водоприемное сооружение — камеру с решетками и сетками, которые задерживают крупные загрязнения. Насосы, установленные в насосной станции первого подъема, забирают ее из водоприемника и подают на станцию очистки.

Поднятая насосами из речного водоприемника вода направляется в отстойники — огромные подземные сооружения. Она движется в них с очень малой скоростью, при этом песчинки и частицы глины оседают на дно. Но далеко не все загрязнения остаются в отстойниках. Самые мелкие частицы уходят вместе с водой.

Для их удаления построены медленные, или, как их раньше называли, английские фильтры. В этих сооружениях вода фильтруется через слой песка вниз очень медленно, со скоростью 5—10 см/ч. На поверхности фильтрующего слоя в процессе фильтрации образуется так называемая биологическая пленка (тонкая пленка из мелких водных организмов, растений и бактерий). Она задерживает самую мелкую взвесь и даже бактерии, находящиеся в воде. Значит, медленные фильтры не только делают воду прозрачной, но и частично дезинфицируют ее. Часть взвешенных частиц задерживается и в толще песка. Медленные фильтры дают воду высокой прозрачности и задерживают до 99 % микроорганизмов. Применяются они главным образом на малых водопроводах, не требуют никаких реагентов и просты в эксплуатации. Недостаток медленной фильтрации — большие размеры фильтров, что увеличивает их строительную стоимость, и несовершенный способ очистки от задержанной взвеси (снятие 1–2 см фильтрующего слоя через один-два месяца). Поэтому медленные фильтры в настоящее время, как правило, на городских водопроводах не строятся.

При фильтрации воды на скорых фильтрах проводят предварительную (до поступления в отстойники) химическую обработку воды — коагуляцию. Наиболее употребительным химическим реагентом для коагуляции служит сернокислый алюминий — продукт обработки белой глины (каолина) серной кислотой. Он представляет собой комья грязновато-белого цвета. Раствор коагулянта вводится в очищаемую воду автоматом в строго определенной дозе в смесителе — большом железобетонном подземном сооружении. В воде происходит химическая реакция, в результате которой взвешенные частицы укрупняются, слипаются, образуя крупные хлопья.

Из смесителя вода поступает в отстойники, где начинают образовываться, или, как принято говорить, созревать, хлопья. Хлопья все время перемещаются: то медленно уходят в сторону, то опускаются вниз, то опять поднимаются вверх. Оседая, хлопья захватывают и увлекают за собой мельчайшую взвесь. Во время отстаивания вода освобождается от взвеси, повышается ее прозрачность, снижается цветность; на дне отстойника образуется толстый слой ила.

Отстойники бывают горизонтальные и вертикальные. Горизонтальные представляют собой длинные прямоугольные железобетонные бассейны, в которых вода движется в горизонтальном направлении. Вертикальные отстойники — это большие цилиндрические резервуары из железобетона с коническим дном и центральной трубой. Вода в них опускается по центральной трубе, а затем медленно поднимается снизу вверх по всему кольцевому течению отстойника и переливается по периметру через желоба уже осветленной. Выпавшая взвесь собирается на дне отстойника, и ее регулярно удаляют.

После отстойников вода поступает на фильтры, где освобождается от оставшихся мельчайших, не осевших в отстойнике хлопьев и частичек мути. Фильтрация воды осуществляется на фильтрах разных систем, представляющих собой резервуары, заполненные зернистым материалом. Фильтрация еще более улучшает качество воды: в порах песка задерживаются остатки взвешенных частиц, вода интенсивнее освобождается и от микроорганизмов. Пройдя отстойники и фильтры, вода становится прозрачной, но для питья она не годится. Очистные сооружения задерживают 99 % бактерий, содержащихся в воде источника.

Подземную питьевую воду приходится очищать также от примесей железа.

Станция обезжелезивания воды имеет сложное оборудование. Мощные насосы из скважины поднимают воду на поверхность и подают на контактную вентиляторную градирню емкостью до 80 м3. С помощью так называемых колец Рашига здесь происходит процесс аэрации, т. е. удаление из воды углекислоты и насыщение ее кислородом. В контактном резервуаре идет процесс окисления железа. Отсюда вода поступает на безнапорные фильтры, в которых железо, содержащееся в воде, полностью задерживается.

Важным этапом обработки воды является обеззараживание, уничтожение болезнетворных микроорганизмов. Обеззараживание воды на водопроводных станциях производят с помощью хлорирования, озонирования или ультрафиолетовых лучей.

Наиболее, распространенный метод — хлорирование. Разработан электролитический способ получения хлора непосредственно на водопроводных станциях путем электролиза поваренной соли. Это позволяет избежать трудностей, связанных с транспортировкой и хранением больших количеств жидкого хлора.

Сущность обеззараживающего действия хлора заключается в угнетении обмена веществ, окисления веществ, входящих в состав протоплазмы клеток бактерий, в результате чего последние гибнут.

На водопроводные станции хлор поступает, как правило, в металлических баллонах в сжиженном состояний под давлением. Стандартные баллоны содержат 25–40 и 100 кг жидкого хлора. Хлор можно вводить в виде газа или хлорной воды. На водопроводных станциях хлор обычно добавляют в виде хлорной воды, чтобы уменьшить коррозионное действие хлора на трубы вблизи места его введения. Дозируют хлор специальные газодозаторы, называемые хлораторами.

В соответствии с планом Московский машиностроительный завод «Коммунальник» при Академии коммунального хозяйства им. К. Д. Памфилова освоил выпуск агрегатов для приготовления гипохлорита натрия — вещества, широко применяемого для обеззараживания и очистки воды. В отличие от жидкого хлора гипохлорит натрия несложно хранить, он прост в обращении, и производство его обходится гораздо дешевле. Гипохлорит натрия можно получать из раствора поваренной соли путем электролиза. Отсюда и название агрегата — электролизер.

Электролизер нового типа способен за сутки вырабатывать 25 кг активного хлора. Это значительно больше, чем давали аналогичные установки старого образца. Кроме того, принцип устройства позволяет также использовать его для непроточных водоемов: устанавливать в бассейнах, цехах, имеющих гальванические ванны, на животноводческих фермах, птицефабриках, предприятиях мясомолочной промышленности.

На небольших водопроводах для хлорирования используют хлорную известь. Об эффективном обеззараживании свидетельствует концентрация остаточного свободного хлора в воде не менее 0,3 мг/л и не более 0,5 мг/л при контакте не менее 30 мин.

В поисках более удобного способа обеззараживания питьевой воды ученые уже давно обратили внимание на озон — газ, который, как и хлор, является сильнейшим окислителем, а следовательно, и сильнейшим обеззараживающим средством. Микроорганизмы под его воздействием быстро гибнут. Это свойство не теряется и при растворении газа: достаточно ничтожной доли озона, чтобы все бактерии в воде были уничтожены. А раз так, нельзя ли применить озон для дезинфекции питьевой воды и может ли он конкурировать с хлором, когда речь идет о чистоте питьевой воды?

Оказалось, что может, и очень успешно. Микробиологи исследовали один из самых опасных вирусов — вирус полиомиелита. Выяснилось, что этот вирус погибает уже через 2 мин, если в 1 л воды растворить 0,5 мг озона. Доза ничтожная! А хлор справляется с этим весьма жизнестойким микробом только за 3 часа. Если же увеличить концентрацию озона, то абсолютно все виды бактерий погибают в течение минуты.

Но уничтожить микроорганизмы мало. Надо, чтобы питьевая вода была светлой и прозрачной. Озон обесцвечивает воду в 15–30 раз быстрее, чем хлор. К тому же озона требуется в несколько раз меньше. Попутно выяснилась и еще одна способность озона: он придает воде отчетливый голубой оттенок. Хлор и здесь явно проигрывает. Он окрашивает воду в не совсем приятный зеленовато-желтый цвет. Озон уничтожает также все запахи и привкусы речной воды.

Небольшие озонаторные установки испытывались в Донбассе, Ярославле, Челябинске и Горьком.

В Москве на Восточной водопроводной станции введена в строй первая очередь крупнейшей в мире озонаторной установки. Она способна очищать за сутки 1,2 млн. м3 питьевой воды. Восточная водопроводная станция обрабатывает волжскую воду, отличающуюся малой мутностью, относительно высокой цветностью, периодически возникающими запахами и привкусами высокой интенсивности. Как показали длительные исследования, выполненные в лабораторных и полупроизводственных условиях, присущие волжской воде; физико-химические, бактериологические и органолептические свойства могут быть с наибольшей эффективностью доведены до требуемых значений путем обработки воды озоном. Все это и послужило основанием для сооружения первой в нашей стране крупной озонаторной установки.

Озонаторная установка разместилась в трех зданиях. В одном из них находятся компрессоры, которые забирают из атмосферы около 10 тыс. м3 воздуха. Он очищается от пыли, охлаждается и избавляется от влаги, затем по трубам поступает на верхний этаж, где в просторном зале в два ряда стоят 18 озонаторов.

Эти аппараты из нержавеющей стали по форме напоминают цистерны. В них под воздействием электрических зарядов высокого напряжения вырабатывается озон. В час они дают 200 кг озона, который в смеси с воздухом идет на обработку воды.

При принятой технологической схеме вода обрабатывается озоном перед очистными сооружениями и обеззараживается после фильтров. В первом случае доза составляет 3 мг/л, во втором — 1 мг/л. Поэтому установка состоит из первичного и вторичного блоков. Общая производительность всей установки составляет 200 кг/ч озона, в том числе 150 кг/ч — для первичного озонирования и50 кг/ч — для вторичного. Производительность одного озонатора достаточно велика — 8,3 кг/ч.

Первичное озонирование происходит следующим образом. Вода, поступающая на обработку из водоемов первого подъема через распределительную камеру, направляется в смесительные бассейны. Озоно-воздушная смесь проходит через отверстия в пористых трубах и в виде мелких пузырьков поднимается вверх по всей площади бассейна, через 4-метровый слой воды. При этом в течение 10–12 мин озон находится в контакте с водой. Обработанная озоном вода теряет желтый цвет, неприятный вкус и запах. Затем она возвращается в распределительные камеры и по трубам идет уже в обычные очистные сооружения, где отстаивается и фильтруется.

Смесительные бассейны блока вторичного озонироваиия (всего их шесть) разделены поперечными струенаправляющими перегородками на три отсека. Во время обработки часть озона входит в контакт с водой и скапливается над ее поверхностью, под перекрытием этих бассейнов.

Озонаторная установка отличается высоким уровнем автоматизации. Автоматика контролирует содержание озона в воде и воздухе на всех этапах получения, транспортирования и обработки воды.

Жители Куйбышевского, Бауманского, Первомайского, Сокольнического, Волгоградского, Ждановского, Перовского, Пролетарского районов Москвы по достоинству оценили качество обработанной озоном воды. Эта вода не уступает по своим качествам ключевой.

Ультрафиолетовое, излучение, используемое на водопроводных станциях для обеззараживания воды, весьма эффективно и перспективно в связи с разработкой новых мощных источников излучения. При использовании ультрафиолетовых лучей в воду не вводятся посторонние вещества, не изменяются ее физико-химические и органолептические свойства. Установки для обеззараживания воды компактны, сравнительно просты в эксплуатации и легко могут быть автоматизированы. Для этого вида обеззараживания не требуются контактные емкости. Однако обеззараживать ультрафиолетовым излучением можно только воду, обладающую малой цветностью и не содержащую коллоидных и взвешенных веществ, которые поглощают и рассеивают ультрафиолетовые лучи. Эффект обеззараживания основан на прямом губительном воздействии ультрафиолетовых лучей на белковые коллоиды и ферменты протоплазмы микробных клеток. Ультрафиолетовое излучение может воздействовать не только на обычные бактерии, но и на споровые организмы и вирусы.

Московская вода по вкусовым качествам считается одной из лучших в мире.

За качеством воды установлен строгий контроль. Ее тщательно проверяют и в месте природного источника, и в процессе обработки, и перед поступлением в водопроводную сеть. Прежде чем подать воду в наш дом, ее отстаивают и фильтруют, обеззараживают, если надо, умягчают, осветляют, избавляют от запахов.

С ростом населения потребность в питьевой воде в различных странах мира резко возрастает. Ученые разрабатывают методы получения пресной воды из морской или из солоноватой воды.

В мире уже; эксплуатируется более 800 опреснителей, которые ежесуточно вырабатывают 1,7 млн. м3 пресной воды, 90 % которой расходуется на питьевые нужды. В нашей стране опресненной водой снабжается г. Шевченко с населением около 80 тыс., расположенный на п-ове Мангышлак, который таит в своих недрах природные ресурсы, но не имеет источников пресной воды. Город вырос на берегу Каспия на краю безводной пустыни. После изучения и проработки различных вариантов водоснабжения полуострова наиболее целесообразным и экономичным был признан вариант опреснения воды из Каспийского моря.

Город Шевченко — это единственный в стране и один из немногих крупных городов мира, который полностью живет на опресненной воде. Город еще очень молод, хотя и стал областным центром. При его проектировании и строительстве использовано все лучшее и передовое. Шевченко не только застроен великолепными современными многоэтажными зданиями, но имеет продуманную и совершенную систему водоснабжения. В городе проложены три водопроводные линии. По первой подается только питьевая вода, по второй — менее качественная техническая вода для ванных комнат и полива зеленых насаждений, по третьей — морская вода для канализации. Благодаря такой разумной и экономной системе водоснабжения каждый житель Шевченко расходует столько же воды, сколько жители таких крупных городов, как Москва, Ленинград и Киев.

Опресненная дистилляцией вода имеет неприятный привкус и запах; в ней почти полностью отсутствуют важные в гигиеническом отношении ингредиенты — кальций, фтор, бикарбонаты и др. Длительное употребление такой воды может вызвать неблагоприятные изменения в организме человека. Кроме того, дистиллят обладает агрессивными свойствами по отношению к конструкционным материалам, и при транспортировании по стальным трубопроводам загрязняется продуктами коррозии. Поэтому на станции приготовления питьевой воды дистиллят подвергают обработке до уровня, соответствующего требованиям стандарта на питьевую воду.

В 1970 г. в Шевченко введена в эксплуатацию первая промышленная станция приготовления питьевой воды производительностью 30 тыс. м3/сут. На станцию поступает охлажденный дистиллят. Здесь его хлорируют. Артезианскую соленую воду очищают от железа и сероводорода путем хлорирования и фильтрования через кварцевый песок. Дистиллят смешивают с артезианской водой в напорном смесителе. Смесь доочищают но такой схеме: дезодорация, стабилизация и обогащение кальцием, фторирование и обеззараживание. Дезодорация смеси производится на восьми загруженных углем напорных сорбционных фильтрах. При фильтровании через уголь вода освобождается от органических соединений, придающих ей привкусы и запахи. Сорбционные фильтры периодически регенерируются. Обогащение воды кальцием происходит при фильтровании ее через мраморную крошку. На станции установлено шесть напорных мраморных фильтров, диаметром 3 м каждый. Высота фильтрующего слоя — 3 м. Мраморная крошка в фильтрах периодически промывается обратным током очищенной воды. Профильтрованную воду хлорируют, фторируют, и только после этого она поступает в подземные резервуары для очищенной воды, откуда затем подается в водопроводную сеть города.

В городе много зеленых насаждений. А ведь каждое дерево выпивает 5—10 л воды в час, т. е. за год на одно дерево потребуется израсходовать 50—100 м3 поливной воды. В г. Шевченко на каждого жителя приходится почти 10 м2 зеленых насаждений, что больше, чем в некоторых столицах мира (Токио, Париж, Лондон и др.), не говоря уже о г. Эль-Кувейте, также живущем на опресненной воде.

Маленькое княжество Кувейт в Персидском заливе площадью 15,5 тыс. км2 славится богатыми месторождениями нефти и страдает от полного безводья. В Кувейте тонна нефти стоила намного дешевле тонны воды, привезенной из Ирака. В 1953 г. в Кувейте построен первый опреснительный завод, работающий на бесплатном попутном газе, прежде сжигавшемся в факелах на нефтепромыслах. Позже было введено в строй еще несколько опреснителей. Теперь Кувейт является крупнейшим в мире производителем опресненной воды. Построенные правительством 14 опреснительных заводов общей производительностью более 212 тыс. м3/сут полностью обеспечивают водой новый город Эль-Кувейт и все государство. В городе стала появляться зелень, но оплачивается она дорогой ценой; уход и полив каждого взрослого дерева или пальмы обходятся в 60—150 долларов в год.

Много опреснителей построено в районе Карибского моря на Малых Антильских и Багамских островах для водоснабжения населения и крупных нефтеперерабатывающих заводов. Работают опреснительные установки и во многих безводных и маловодных районах тропической зоны земного шара (Австралия, Ближний Восток, Северная Африка, Латинская Америка и др.), а в последние годы строятся уже и в увлажненной зоне — в Европе, Азии и Америке.

В окрестностях ливийской столицы вступила в строй первая очередь крупнейшего в Северной Африке теплоэнергетического комплекса. Он включает тепловую электростанцию мощностью 500 тыс. кВт и завод для опреснения морской воды производительностью 12 тыс. м3/сут. Вторая очередь комплекса действует с конца 1976 г. Введены в эксплуатацию еще два крупных электроагрегата, мощностью по 250 тыс. кВт каждый. Производительность установки по опреснению морской воды возросла почти вдвое.

Немногие суда, отправляясь в плавание, берут сейчас пресную воду. Гораздо выгоднее и удобнее получать ее непосредственно из морской воды с помощью испарительной установки, находящейся на борту корабля.

Японские ученые проводят эксперимент до промышленному опреснению морской воды. В г. Наганосу применен метод многоступенчатой дистилляции, основанный на способности воды закипать в условиях низкого атмосферного давления при температуре менее 100°. Насосы подают морскую воду на предприятие, где она проходит последовательно 50 камер, в которых давление постепенно понижается. Вода в них закипает при все более низких температурах, а образовавшийся пар конденсируется и превращается в пресную воду. С завершением строительства последней очереди этого предприятия, по расчетам специалистов, здесь будет производиться 100 тыс. т пресной воды в день.

Ученые давно искали пути использования дешевой солнечной энергии для опреснения воды. Ведь в природе этот процесс совершается с высокой эффективностью и в гигантских масштабах. Действительно, в южных районах, где солнечного тепла много, а пресной воды мало, для этого имеются благоприятные условия. Так, на широте Ашхабада сумма прямой солнечной радиации равна 1,866 Гкал/м2. Этого тепла достаточно для испарения слоя воды в 3 тыс. мм.

Хотя солнечное тепло и даровое, но гелиоопреснение обходится отнюдь не дешево и требует больших капиталовложений.

В СССР разработаны различные конструкции опреснителей (парникового типа и с концентраторами энергии, стационарные и переносные), подготовлен образец опытно-промышленного солнечного опреснителя площадью 2,4 тыс. м2 и производительностью 12 м3/сут.

В 1969 г. в Туркмении на отгонных пастбищах совхоза «Бахарден» на колодце Овез-Ших построена первая очередь этого опреснителя площадью 600 м2, а в Каракумах — вторая очередь площадью 1,8 тыс. м2. Теперь опреснитель обеспечивает водой две-три отары овец. В 1971 г. в Узбекистане сооружен еще один солнечный опреснитель парникового типа в совхозе «Шафрикан» Бухарской области. Как основной опреснитель площадью 600 м2, так и опреснители по 100 м2 других типов предназначены в основном для изучения и оценки технических и экономических возможностей гелиоопреснения.

Опреснить соленую воду можно также путем ее замораживания. Дело в том, что температура замерзания соленой воды ниже температуры замерзания воды пресной. При медленном охлаждении в соленой воде прежде всего образуются кристаллы пресного льда. Если полученный лед отделить от незамерзшей воды и расплавить его, то талая вода может быть вполне пригодной для питья.

Заморозить соленую воду можно при помощи природного холода или используя искусственное охлаждение. Метод естественного замораживания отличается низкой эффективностью и сезонностью работы, кроме того, может применяться только в определенной географической зоне. Поэтому замораживающий метод опреснения соленой воды разрабатывается преимущественно в расчете на искусственное охлаждение.

Первые опытные замораживающие опреснители были построены во Франции и мало чем отличались от обычных льдоделательных машин: тепло в них многократно передавалось через металлические теплообменные поверхности. Тепловая эффективность замораживающих опреснителей с теплообменом через стенку была очень низкой, поэтому расход электроэнергии в них достигал 60 кВт * ч/м3, и опресненная вода стоила дорого. Из-за низкой экономичности опреснители подобного типа не нашли практического применения.

Шведские химики успешно завершилиэксперименты по опреснению морской воды. По их способу, воду смешивают с жидким бутаном, смесь быстро замерзает, и кристаллы соли легко отделяются. Затем лед растапливают в специальных цистернах для пресной воды. Бутан отделяют и используют снова. Энергетические затраты при этом методе сокращаются в 4 раза.

Опреснение соленых вод методом электродиализа основано на удалении ионов солей из раствора под действием поля постоянного электрического тока. Более 100 электродиализных опреснительных установок различного типа эксплуатируется в ряде районов Средней Азии, Казахстана, Украины, Северного Кавказа, Заволжья и т. д.

Известно, как трудно в степи с водой, особенно в знойную пору. Жажду испытывают люди, нечем напоить скот на отгонных пастбищах. Под землей же, на глубине нескольких метров, вода есть повсюду. Но, когда человек добирается до нее, его обычно ждет разочарование: вода солона и горька, пить ее невозможно. Как быть? Вот эту проблему и должны решить опреснительные установки, способные под воздействием электрического поля освободить воду от избытка солей.

Отделение ионов солей от воды можно наблюдать, если в ванну с соленой водой поместить катод и анод, соединенные с источником постоянного тока. Под действием разности потенциалов начинается перемещение ионов в соответствии со знаком их заряда, т. е. катионы передвигаются к катоду, а анионы — к аноду. При разряжении ионов на катодной пластине выделяется натрий, который мгновенно растворяется водой с образованием щелочи, и свободный водород в виде пузырьков газа. Одновременно на поверхности анодной пластины образуются кислород и хлор, и в результате взаимодействия атомарного хлора с водой — соляная кислота. Вблизи катода и анода вода становится соответственно щелочной и кислой.

Если разделить ванну ионопроницаемыми мембранами на три камеры, то соленая вода, находящаяся между мембранами, постепенно опресняется. Это происходит вследствие того, что в электродных камерах накапливаются ионы Н+ и ОН-, которые участвуют в переносе электричества через центральную камеру, где они соединяются, образуя воду. Ионы же Na+ и Cl-, перешедшие в электродные камеры, удаляются из них вместе с кислой и щелочной водой.

Однако вследствие диффузии происходит одновременно и беспорядочное перемещение ионов Н+ и ОН-, а также ионов солей, в результате чего последние снова возвращаются из анодной и катодной камер в центральную. Для исключения процесса диффузии, необходимо, чтобы ионопроницаемые мембраны обладали селективностью, т. е. способностью пропускать ионы с зарядом одного знака. Иными словами, положительно заряженные мембраны (анионоактивные), должны пропускать только анионы, а отрицательно заряженные (катионоактивные) — только катионы.

За последнее время благодаря достижениям химии был получен многочисленный ряд селективнопроницаемых мембран, обладающих большим сопротивлением диффузии и высокой электропроводностью. К их числу относятся гомогенные (поликонденсационные, внутриполимерные, привитые, активированные), гетерогенные и пропиточные ионитовые мембраны, нашедшие широкое распространение в современных электродиализных установках. Отличаясь своими физико-химическими свойствами в соответствии со способами их получения, перечисленные мембраны изготавливаются с фиксированными ионогенными группами, электрическое поле которых создает условия для избирательной ионопроводимости, т. е. исключает возможность пропускания через мембрану ионов, одинаково заряженных с фиксированными ионами в полимерной структуре (матрице) мембраны.

Получение селективных ионопроницаемых (ионообменных) мембран определило возможность применения многокамерных электродиализаторов со многими парами катионо- и анионоактивных мембран. Такие установки представляют собой ванны, состоящие обычно из 100–200 гидравлических камер, которые могут быть соединены последовательно или параллельно с горизонтальной или вертикальной циркуляцией воды. В настоящее время распространены преимущественно электродиализные ванны фильтропрессного типа. В этих ваннах мембраны, расположенные между катодом и анодом, разделены рамками из диэлектрика. Под действием электрического поля ионы, находящиеся в растворе, приходят в упорядоченное движение. Катионы движутся в одном направлении, а анионы — в противоположном. При этом селективнопроницаемые мебраны исключают возможность обратного поступления ионов в обессоленную воду. Таким образом, из нечетных камер ни анионы, ни катионы не могут пройти в соседние камеры вследствие того, что знак их заряда совпадает со знаком соответственно катионоактивных и анионоактивных мембран. В результате концентрация солей в воде одних камер (четных) начинает падать, т. е. происходит процесс опреснения, а в нечетных, наоборот, возрастает, что приводит к образованию рассола. Полученные обессоленная вода (дилюат) и концентрированный раствор отводятся из системы.

Кроме опреснения солоноватых вод, электродиализ может помочь при повторном употреблении воды для удовлетворения увеличивающегося водопотребления в промышленно развитых районах. Каждое использование воды городом повышает количество растворенных минералов примерно на 300 мг/л, поэтому при многократном пользовании водой возникает необходимость уменьшения ее солесодержания. Электродиализ в этом случае является наиболее эффективным процессом для удаления солей из воды с таким низким солесодержанием.

К настоящему времени разработаны надежные ионоселективные мембраны, а сам метод во многом технически эффективно разрешен, что может служить хорошей рекомендацией для него.

Электродиализные установки применяются не только для водоснабжения небольших водопотребителей, но и для крупных населенных пунктов, а также для промышленных и сельскохозяйственных производств. В Советском Союзе такие установки производительностью от 50 до 500 м3/сут успешно эксплуатируются на различных железнодорожных станциях. Сооружены также крупные установки производительностью 300 м3/сут на станции Моинты и производительностью 100 м3/сут на ТЭЦ станции Актогай. Установки опресняют воду с солесодержанием 2,1 г/л.

Большое внимание уделяется исследованию и разработке нового метода опреснения воды, который в нашей стране называют гиперфильтрационным, а за рубежом — обратноосмотическим.

Суть его заключается в следующем. Если два раствора с различными концентрациями разделены полупроницаемой пленкой, менее насыщенный раствор постепенно перетечет сквозь нее к более насыщенному. Но, если в объеме с более концентрированным раствором повысить давление, все происходит наоборот: растворитель уходит в объем с меньшей концентрацией вещества. Это явление так называемого обратного осмоса, на котором основана работа установок «Роса». При опреснении соленой воды этим методом чистая вода, являющаяся растворителем, находится под давлением и отделена от раствора полупроницаемой пленкой. В идеальном случае эта пленка пропускает только молекулы воды и не пропускает молекулы солей.

В США создано устройство, опресняющее морскую воду методом обратного осмоса. Морская вода подается под большим давлением в батарею, состоящую из большого числа пластмассовых трубок. Через стенки этих трубок по закону осмоса проникает только чистая пресная вода, а все растворенные в морской воде соли задерживаются. Батарея, состоящая из тысячи трубок, дает 10 тыс. л питьевой воды в сутки.

В ряде случаев питьевую воду необходимо длительно сохранять. С этой целью наиболее целесообразно применение серебра. В этом направлении интерес представляют фундаментальные работы академика АН УССР Л. А. Кульского, долгие годы тщательно изучавшего теорию и практику применения серебра в технологии обработки воды. Наиболее эффективен электрохимический метод приготовления серебряной воды (обогащение воды серебром при помощи электролиза), впервые разработанный им в 1930 г. и широко применяющийся в последнее время во многих странах. Постоянный электрический ток пропускается через пару погруженных в воду серебряных электродов; анод растворяется, и вода обогащается серебром. Полученная таким способом серебряная вода используется для дезинфекции питьевых и минеральных вод, консервирования некоторых продуктов питания, приготовления ряда фармацевтических препаратов и в лечебных целях.

В основе принципа действия аппаратуры для получения серебряной воды в соответствии с существующими методами насыщения воды серебром лежат контактирование воды с посеребренными поверхностями или ее обогащение серебром под действием электрического тока. Электролизная аппаратура обладает рядом преимуществ, и главные — дозирование и учет вводимого серебра — производятся по расходу электроэнергии. Такие установки компактны, обеспечивают высокую производительность и большую точность дозирования. Для введения серебра в воду, как правило, используется постоянный ток небольшого напряжения (до 20 В). Изменяя силу тока и время прохождения воды через аппарат, можно получать электролитические растворы серебра любой концентрации. Количество расходуемого серебра — ничтожно (0,05— 0,25 г на 1 м3 воды). При взаимодействии с органическими веществами и другими примесями воды серебро постепенно инактивируется, но его активность сохраняется в течение длительного периода. Серебро даже в сравнительно высокой концентрации не изменяет органолептических показателей воды. Следы серебра в воде вызывают гибель вегетативных форм бактерий, задерживают развитие спор, угнетают рост синезеленых водорослей, вирусов.

Использование серебра для обеззараживания воды не только увеличивает арсенал существующих реагентов, но и является одним из наиболее эффективных методов дезинфекции и консервирования питьевой воды.

Серебро, как уже отмечалось, обладает более высоким антимикробным аффектом, чем пенициллин, биомицин и другие антибиотики, и оказывает губительное действие на антибиотикоустойчивые штаммы бактерий. Вода, содержащая всего 1 мг/л серебра, хорошо инактивирует вирусы гриппа различных штаммов. Такая вода при последующем заражении сохраняет свою бактерицидность на протяжении многих месяцев. Даже при значительно меньших концентрациях, не превышающих 0,1–0,2 мг/л, она способна убивать многие патогенные организмы, вызывающие опасные водные эпидемии. Водные растворы серебра (привозе 0,1 мг/л) являются эффективным средством при обеззараживании питьевой воды от возбудителей холеры при концентрации последних в 1 мл до 1 млн, особей.

Весьма высокая бактерицидность серебряной воды была установлена и при заражении ее многими опасными кишечными возбудителями. Электролитические растворы серебра (серебряная вода) в концентрации 0,1, 0,2 и 0,5 мг/л обладают высокими бактерицидными свойствами и рекомендованы для обеззараживания воды, инфицированной возбудителями дизентерии, брюшного тифа, парафитов и сальмонеллезов.

Ионы серебра, адсорбируясь на поверхности клетки бактерии в результате взаимодействия электростатических сил (серебро + и протоплазма —), проникают внутрь и связываются с нуклеиновым ядерным веществом, образуя нуклеинаты. Этим они нарушают жизнедеятельность бактерий. Повышение температуры воды также оказывает положительное влияние на эффективность бактерицидного действия ионов, что свидетельствует о значительной роли химических процессов в этих явлениях. В прозрачной и бесцветной воде обеззараживающий эффект достигается за час-два при концентрациях электролитического серебра 0,2–0,4 мг/л, причем высокие питьевые качества воды сохранялись в течение всего 90-дневного периода наблюдения. Результаты были безупречны, и когда повторно загрязняли воду микробами и изменяли условия ее хранения — в различных по материалу и величине емкостях, при разной температуре. Выяснилось также, что для сохранения чистой питьевой воды достаточны меньшие концентрации серебра — 0,05 мг/л.

Было установлено, что без всякого вреда для здоровья можно всю жизнь употреблять воду, концентрация серебра в которой не превышает 0,05 мг/л. Это узаконено, как уже отмечалось, Государственным стандартом качества питьевой воды. Кратковременное же использование допускает и большие концентрации серебра — 0,1–0,2 мг/л. Так, общеизвестен эксперимент, когда испытатели целый год жили в условиях, приближенных к космическому полету; они употребляли воду, содержавшую 0,1 мг/л электролитического серебра. Каких-либо неблагоприятных последствий обнаружено не было. Качество же воды оставалось неизменно высоким.

Метод консервации воды серебром отлично зарекомендовал себя на морском флоте. Сегодня на морских судах установлены сотни ионаторов.

Известно, что для пищеблоков на судах дальнего плавания вода хранится в специальных питьевых танках. Но стационарные крупногабаритные, тяжеловесные резервуары непригодны для использования на спасательных шлюпках и рыбацких лодках. Для этих целей разработана технология консервирования аварийных запасов воды ионами серебра с хранением ее в полиэтиленовых мешочках, помещенных в герметично «закатанные» банки вместимостью 465 мл. Такая вода не теряет своих вкусовых свойств в течение двух лет, причем малогабаритная банка удобна для пользования. Бактериологический анализ этой воды не выявил наличия в ней бактерий. Другая картина наблюдалась в пробе воды, взятой из обычного анкерка — деревянного бочонка, в каком исстари хранится аварийный запас в спасательных шлюпках. Всего лишь после месячного рейса жидкость была мутной, появился привкус, да и запах оказался далеко не идеальный. Поэтому запасы в бочонках приходится часто обновлять, деревянную тару подвергать специальной обработке.

Серебро оказалось прекрасным консерватором минеральной воды. В настоящее время на Московском, Киевском, Ялтинском, Добропольском, Харьковском, Тальновском, Березовском, Феодосийском, Кисловодском, Днепропетровском и других заводах безалкогольных напитков минеральную воду обеззараживают и консервируют серебром. Это позволило увеличить пропускную способность складских помещений, улучшило бактериологические показатели минеральной воды. В последнее время появились бытовые ионаторы. К ним относятся переносной ионатор ЛК-25 (модель 1966 г.) и ионатор ЛК-27 (модель 1970 г.). Последний изготавливается Сумским заводом электронных микроскопов. Применение их, несомненно, оправдывает себя, но требует строгого соблюдения правил, изложенных в инструкциях.

Санитарно-гигиеническая оценка показала высокие качества и полную стабильность исходных физико-химических и бактериальных показателей питьевой воды, консервированной с помощью серебра, а космонавты отмечали ее хороший вкус.

Гидроэнергетика и орошение

Исключительно большое значение имеет вода как источник энергии. За несколько тысячелетий до нашей эры человек уже использовал проточную воду как движущую силу — на реках строили водяные мельницы. Однако промышленная гидроэнергетика получила развитие в XX в. И большую роль в этом процессе сыграла наша страна.

В 1926 г. вступил в строй первенец советской гидроэнергетики — Волховская ГЭС мощностью 58 тыс. кВт. вслед за Волховстроем были введены сотни гидроэлектростанций. В настоящее время Советский Союз занимает ведущее место в мире по запасам гидроресурсов.

Изменение режима рек, вызванное строительством ГЭС, не только не сокращает водных ресурсов, но, напротив, приводит к их аккумулированию в водохранилищах, которые по водному зеркалу часто соизмеримы с крупными озерами. Создание водохранилищ позволяет более рационально использовать водные ресурсы в различных отраслях промышленности, способствует широкому развитию обводнения в засушливых районах.

Только в СССР ныне насчитывается около 1000 водохранилищ объемом более 1 млн. м3. Аккумулированные в них запасы водной энергии оценивают в 775 млрд. кВт*ч, Три четверти из них находятся в восточной части страны, что имеет исключительно важное значение для осуществления намеченной партией программы развития производительных сил этого края. Мощные гидроузлы являются опорными пунктами быстрейшего освоения несметных природных богатств северо-восточных районов. Так, на электроэнергии Братской ГЭС работает крупнейший в Сибири Коршуновский горно-обогатительный комбинат, наращивают свои силы Братский алюминиевый завод и лесопромышленный комплекс. Усть-Илимская ГЭС становится энергетической базой другого индустриального комплекса, в который входят горно-обогатительные и целлюлозные комбинаты. Самая крупная в мире Саяно-Шушенская гидроэлектростанция мощностью 6,4 млн. кВт, первые агрегаты которой вступили в строй в десятой пятилетке, послужит основой для формирования Саянского территориально-производственного комплекса.

Как подчеркивалось в решениях XXV съезда партии, сооружение преимущественно крупных гидроузлов позволяет комплексно решать задачи производства электроэнергии, орошения земель, обеспечения водой городов и промышленных предприятий, развития судоходства и рыболовства, предотвращения наводнений. В этой связи важное значение имеет строительство Зейской, Бурейской и Колымской ГЭС на Дальнем Востоке, Днестровской ГЭС на Украине, Шульбинской ГЭС в Казахстане, Ингурской в Грузии, Шамхорской в Азербайджане, Курпсайской в Киргизии, Нурекской и Рогунской в Таджикистане. Одни из этих станций уже вступают в строй, на других работы только развертываются.

Огромно значение водохранилищ гидроэлектростанций и в водном хозяйстве страны. Построенные в бассейнах р. Волги, Днепра, Амударьи и Сырдарьи такие водохранилища создали предпосылки для орошения более 10 млн. га сельскохозяйственных земель. По водохранилищам осуществляется свыше 60 % всего объема водных перевозок в стране.

Какова главная задача гидроэлектростанций на Волге? Дело не только в том, что они вырабатывают 40 млрд. кВт*ч электроэнергии в год, не расходуя при этом ни грамма топлива. ГЭС еще играют роль регулятора, мобильного резерва. Нагрузка в сети Единой энергетической системы Европейской части СССР меняется, и порой очень быстро. Гидроэлектростанции отзываются почти мгновенно на резко возросшую потребность в электроэнергии.

Раньше главным показателем их работы было количество выработанной электроэнергии, киловатт-часы. Теперь показатель другой — готовность к несению нагрузки. Но, чтобы поддержать состояния высокой готовности, нужно весной, в паводок, аккумулировать определенное количество воды в водохранилище, поднять ее уровень хотя бы до минимальных отметок.

В настоящее время для покрытия пиковых нагрузок строят гидроаккумулирующие электростанции (ГАЭС). В вечерние часы в городе сильно возрастает потребление электроэнергии. Ему требуется столько электроэнергии, что специалисты говорят о вечерних часах «пик».

Но вот наступает разгрузка. И тепловые агрегаты, работающие на пределе в пиковые часы, вынуждены резко менять ритм. Оборудование болезненно переносит скачки в нагрузке от максимума до минимума, а «лечение» обходится дорого — только в Мосэнерго на ремонт блочного оборудования ТЭС в переменном режиме затрачивается около 15 млн. руб. ежегодно. Десятками тысяч тонн пережигается топливо. Причина та же — работа агрегатов в резкопеременном режиме. Крупные энергосистемы давно испытывают необходимость в своеобразном банке, куда бы можно было «положить» излишек, а при нужде обратится за помощью. Роль этих банков и отведена ГАЭС.

Несколько лет назад под Киевом вступила в строй первая подобная станция, правда, небольшая — у нее всего один агрегат. Сейчас сооружаются две крупные — Загорская в Подмосковье на р. Кунье и Кайшядорисская — на берегу Каунасского водохранилища.

Что же такое ГАЭС?

Технологически идея, на первый взгляд, проста: два сообщающихся бассейна расположены один над другим. Когда потребности в энергии снижены, например, глубокой ночью, вода из нижнего бассейна перекачивается в верхний. Это увеличивает энергопотребление и одновременно создает ее потенциальный запас. С наступлением часа «пик» воду из верхнего водохранилища спускают в нижнее, и агрегаты, еще недавно работавшие в насосном режиме, переключаются на режим простых гидроэлектростанций — турбинный.

Гибкие, способные к маневрированию станции — вот в чем главное достоинство ГАЭС. Как известно, нормативный срок окупаемости обычных ГЭС не менее восьми лет, а Загорская ГАЭС окупит затраты на ее сооружение в течение пяти с половиной лет.

Все агрегаты новой станции в конечном счете после освоения проектной мощности будут ежегодно давать столице 1,2 млрд. кВт*ч электроэнергии, тем самым значительно пополнят энерговооруженность города.

СССР — единственная в мире страна массового строительства мощных ГЭС на равнинных реках, где средние удельные размеры водохранилищ (поверхность затопления на единицу годовой выработки электроэнергии) в четыре раза выше, чем, например, в США. Один из основных экономических вопросов, связанных с этим строительством, было изъятие из сельскохозяйственного и других видов использования большой территории. Особое внимание при его решении пришлось обратить на проблему мелководных зон водохранилищ. Как известно, при максимальном уровне они покрыты водой, а при сработке ее запаса — осушаются. К тому же зоны эти очень велики, например, на Куйбышевском водохранилище они достигают 170 тыс. га, т. е. составляют около 40 % всей его площади.

Нелегко использовать в хозяйстве мелководные зоны. Годовой график их заполнения и осушения, обусловливаемый нуждами энергетики, ирригации, водоснабжения и транспорта, резко отличен от природного цикла весеннего затопления заливных лугов с быстрым спадом воды и последующим бурным ростом растительности на увлажненной и удобренной илом почве (этот цикл важен и для рыбного хозяйства: затопленные весной мелководья становятся нерестилищами, откуда после спада вешних вод мальки скатываются в реку). Потребители воды требуют значительно более длительного затопления мелководий и постепенного осушения их в течение осени и зимы. В результате разрастающиеся за лето на мелководье водоросли при осушке отмирают, загрязняя водохранилище гниющей массой. Эти неблагоприятные последствия можно устранить лишь частично, например выкашиванием и уборкой водорослей при осушке или изменением графика потребления воды с явным ущербом для ее использователей. Положение дополнительно усложняется тем, что в маловодные годы из-за недостатка воды происходит осушение зон, целый ряд лет находившихся под водой.

При строительстве новых водохранилищ предусматривается защита мелководий путем отсечения их от основного хранилища дамбами. Водохранилище Чебоксарской ГЭС затопило около 54 тыс. га сельскохозяйственных угодий. Здесь надо отдать должное проектировщикам, потому что под водой могло бы оказаться гораздо больше сельхозугодий. Специальная инженерная защита, предусмотренная проектом, сохранит от затопления почти 26 тыс. га земли, в том числе 15 тыс. га сельскохозяйственных угодий. Следует отметить, что в зоне затопления окажутся в основном так называемые неудобные земли — заболоченные, сильно изрезанные, используемые только под выпасами и сенокосами.

Несмотря на невысокую продуктивность отчуждаемых под водохранилище земель, предусматривается в качестве компенсации провести коренную мелиорацию залесенных и заболоченных участков, и ввести их в сельскохозяйственный оборот. В целом намечено вновь освоить свыше 20 тыс. га под пашню, повысить продуктивность старопахотных земель, а также лугов и пастбищ. Словом, предусмотрено все, чтобы в будущем новое море не нанесло ущерба сельскому хозяйству.

Чебоксарский гидроузел с экономической точки зрения очень эффективен. Он сразу решает несколько народнохозяйственных задач: производство электроэнергии, улучшение судоходства и водоснабжения населения, промышленных предприятий, орошение земель, развитие рыболовства в бассейне Волги. Такое комплексное использование гидроузла позволит окупить вложенные в него средства за 5–6 лет, т. е. вдвое быстрее обычного срока, допустимого для такого вида строительства.

В сентябре 1970 г., на год раньше установленного срока, заработала на полную мощность — 2,7 млн. кВт — самая крупная в Средней Азии Нурекская гидроэлектростанция — энергетическое сердце Южнотаджикского территориально-производственного комплекса. Воздвигнутый на бурной р. Вахше гидроузел имеет многоцелевое назначение. Его водохранилище емкостью 10,5 млрд. м3 образовано самой высокой в мире каменно-набросной плотиной высотой 300 м, перекрывшей Пулисангинское ущелье. Ежегодно здесь будут вырабатываться свыше 11 млрд. кВт*ч электроэнергии. Водохранилище позволит орошать свыше 0,5 млн. га хлопковых полей на землях Таджикистана, Узбекистана и Туркмении. По 30-километровому Дангаринскому тоннелю вахшская вода из водохранилища придет на поля знойной Гиссарской долины, где возделывается ценный длинноволокнистый хлопок.

Многоцелевое назначение энергоисполина на Вахше обеспечивает его высокую экономическую эффектность. За счет прибыли, уже полученной при выработке электроэнергии и повышении урожайности хлопка, гидроузел в 1980 г. полностью окупил все строительные затраты.

Опыт, накопленный при создании Нурекского гидроузла, поможет строителям Рогунской ГЭС — пятой станции вахшского каскада. Почти на 350 м возвысится плотина нового гидроузла, мощность которого достигнет 3,6 млн. кВт. Ежегодно он будет вырабатывать 13 млрд. кВт*ч дешевой электроэнергии, которая войдет в объединенную энергосистему Средней Азии и поможет дальнейшему развитию промышленности и сельского хозяйства республик Средней Азии. Новая станция позволит ежегодно экономить в среднем до 4 млн. т условного топлива. В Рогунское водохранилище соберется до 12 км3 влаги, необходимой для орошения полей всех Среднеазиатских республик, для создания новых хлопководческих районов. Только за счет регулирования стока Вахша Рогунским морем в зоне Каршинских степей, Амубухарского и Каракумского каналов прирост вновь орошаемых земель превысит 320 тыс. га. Рогунская ГЭС будет одной из самых высокоэффективных в СССР.

Сельское хозяйство является, как правило, одним из наиболее значительных водопотребителей. В системе водного хозяйства нашей страны — это самый крупный водопотребитель. И характерно, что около трех четвертей воды в сельском хозяйстве расходуется безвозвратно.

Для того чтобы составить мнение о водоемкости этой отрасли народного хозяйства, достаточно напомнить, что на выращивание 1 т пшеницы требуется за вегетационный период 1,5 тыс. т воды, 1 т риса — более 7 тыс. т, 1 т хлопка — около 10 тыс. т. Прежде чем в магазине появится банка консервов из овощей или фруктов, на нее будет истрачено 40 л воды. Подсчитано, что только для производства суточной нормы пищевых продуктов в расчете на одного человека требуется не менее 6 м3 воды. Большое ее количество расходуется в связи с развитием животноводства. Животноводческие комплексы на промышленной основе являются крупными потребителями доброкачественной воды.

Орошение и связанные с ним инженерно-технические мероприятия оказывают влияние на гидрологический цикл и водные ресурсы регионов. Во многих странах и целых районах мира орошение является основным потребителем воды и в маловодные годы обусловливает возникновение дефицита водных ресурсов. Особенно большое значение это имеет для аридных районов, где в настоящее время проживает большая часть человечества. К началу XX в. площадь орошения на Земле составляла ~ 40 млн. га, в том числе в Индии — 17 млн. га, России — 3 млн. га, США — 3 млн. га, Египте — 2,4 млн. га, Японии — 2 млн, га, Италии — 1,6 млн. га. Площадь орошаемых земель в мире достигла в 1975 г. ~ 250 млн. га, т. е. за 75 лет текущего столетия увеличилась более чем в 6 раз. Около 60 % всех орошаемых площадей сосредоточено в Китае, Индии, США и СССР.

Особенностью развития современного орошения является продвижение его на север, в районы достаточного и даже избыточного увлажнения; здесь орошение рассматривается как неотъемлемая часть системы агротехнических мероприятий, позволяющих получать высокие и устойчивые урожаи сельскохозяйственных культур независимо от метеорологических условий. В Европе нет ни одной страны, где в той или иной мере не было бы развито орошение; значительные орошаемые площади имеются, например, в Польше, Великобритании, ФРГ, Нидерландах. Все большее распространение в северных районах Европы приобретает так называемое двухстороннее регулирование водного режима почвы, предусматривающее сочетание осушения и орошения на мелиорируемых землях.

Развитие орошения засушливых земель прежде всего вытекает из необходимости обеспечения человечества продуктами питания. Несмотря на то что в настоящее время орошается немногим более 15 % всех обрабатываемых площадей мира, продукция с орошаемых полей составляет более половины всей сельскохозяйственной продукции в стоимостном выражении. В условиях высоких темпов роста населения и острого недостатка продуктов питания, который испытывают сейчас почти две трети жителей планеты, ирригации отводится все большая роль в повышении эффективности земледелия и животноводства. Поэтому и в перспективе можно предположить, что орошаемое земледелие в мире будет интенсивно развиваться. Например, в странах — членах СЭВ предполагается увеличить орошаемые площади через 15–20 лет почти в 3 раза, в отдаленной перспективе — в 4 раза по сравнению с современным уровнем. Согласно перспективному плану развития сельскохозяйственного производства (ФАО, 1969 г.) предполагается увеличить орошаемые площади за период 1962–1985 гг. в развивающихся странах Азии (без Китая) в 1,5 раза, Латинской Америки — 1,7 раза, Ближнего Востока и Северо-Восточной Африки — 1,2 раза, Южной Африки — 1,7 раза.

Более низкие темпы роста площадей орошаемых земель намечаются в отдаленной перспективе до 2000 г. в странах Западной Европы и США. Так, предполагается, что достигнутые в 70-х годах в США темпы ввода новых орошаемых площадей (~ 400–500 тыс. га/год) в период до 2000 г. будут постепенно снижаться до 100 тыс. га/год.

На основании систематизации и обобщения сведений, приведенных в литературе по отдельным странам и районам мира, материалов ФАО за последние годы динамика орошаемых площадей и предполагаемая перспектива их роста, по континентам и по земному шару в целом может быть охарактеризована данными табл. 11.

Следует отметить, что данные этой таблицы приближенные, поскольку сведения по многим странам, приведенные в различных источниках, довольно разноречивы, характеризуют разные годы и т. п. Особенно это относится к сведениям за наиболее ранние годы, а также к данным на перспективу. Последние следует рассматривать как возможный вариант, основанный на общих тенденциях развития ирригации и разработанных в отдельных странах мира перспективных планах.

Таблица 11. Площади орошаемых земель в мире за 1900–2000 гг. (И. А. Шикломанов, 1976)

Континент Площади орошаемых земель, млн. га
1900 г. 1940 г. 1950 г. 1960 г. 1970 р. 1985 г. 2000 г.
Европа 3,5 8 10 15 21 30 45
Азия 30 50 65 135 170 220 300
Африка 2,5 4 5 7 9 12 18
Северная Америка 4 9 13 17 25 32 35
Южная Америка 0,5 1,5 3 5 7 10 15
Австралия и Океания 0 0,3 0,5 1,0 1,6 2,2 3
Вся суша (округленно) 40 73 96 180 234 310 420
Как видно из табл. 11, большая часть орошаемых площадей (73 %) в 1970 г. была сосредоточена в Азии, где они занимают почти 30 % общей обрабатываемой сельскохозяйственной площади, затем следуют Северная Америка (25 млн. га, 10,7 %) и Европа (21 млн. га, 9,0 %). На 1985 г. предполагается увеличение орошаемых площадей в мире до 300–310 млн. га (в 1,3 раза), а к 2000 г. — до 410–420 млн. га (в 1,8 раза) по сравнению с современным уровнем. Наибольший рост орошаемых площадей ожидается в Европе (более чем в 2 раза к 2000 г.), что обусловлено в основном намечаемыми интенсивными планами развития ирригации в странах — членах СЭВ (особенно на ЕТС, где предполагается увеличить площади орошения в 5–6 раз).

За годы десятой пятилетки введено в эксплуатацию за счет государственных капитальных вложений 4 млн. га орошаемых земель, обводнено в пустынных, полупустынных и горных районах 37,6 млн. га пастбищ, увеличены площади орошаемого земледелия в районах юго-востока Европейской части РСФСР, на Северном Кавказе, юге Украины, в Молдавии, Казахстане, республиках Средней Азии и Закавказья.

В конце 70-х годов завершилось строительство второй очереди одной из крупнейших на Украине Северо-Рогачикской оросительной системы. Ежегодно зона гарантированных урожаев расширяется в республике на сто с лишним тысяч гектаров.

В Саратовской области построены крупные оросительные системы: Энгельсская, Духовницкая, первая очередь Приволжской и др. Подготовлена к сдаче оросительная система им. Гагарина, где применены новейшие средства автоматики и телемеханики. Полным ходом идет сооружение Балаковской, второй очереди Приволжской, крупнейшей в Поволжье — на 160 тыс. га — Комсомольской системы. В 1949 г. орошаемые площади занимали в области лишь 32 тыс. га, а в 1979 г. — 360 тыс. На этом огромном поле ежегодно выращивается 95 % овощей, 50 — картофеля, 35 — всех видов кормов. Поливной гектар дает урожай зерновых в три-четыре раза больший, чем на богаре.

В 1979 г. воды Кубани пошли по третьей очереди Большого Ставропольского канала — новостройки десятой пятилетки. Канал длиной 42,5 км мощно прорезал голубой трассой иссушенные земли степи.

Быстрая Кубань еще дальше продолжила свой путь, чтобы оросить дополнительно тысячи гектаров колхозных и совхозных земель. Первые две очереди уже окупили основные затраты на строительство прибавкой урожаев. Третья очередь уникальна в том отношении, что впервые пришлось решать ряд гидротехнических задач, вызванных необычайной сложностью рельефа трассы, составом грунтов. Строителям пришлось в одном месте взрывать породу, в другом — уплотнять. Одновременно создавалась и орошаемая сеть, рассчитанная на напор естественного тока воды и на применение новейших поливальных агрегатов. В отличие от предыдущих линий, ложе канала одето в трехслойную противофильтрационную рубашку из железобетонных плит, толя, полиэтилена. Закончив на год раньше намеченного срока третью очередь, строители приступили к прокладке нового 100-километрового отрезка Большого Ставропольского канала.

В 1980 г. вступил в строй Главный Каховский магистральный канал — основная артерия Каховской оросительной системы. Новая водная магистраль имеет важное значение для интенсификации сельскохозяйственного производства, создания в степной зоне Украины крупного района гарантированного производства зерна, овощей, мяса, молока и другой продукции сельского хозяйства.

Сооружение канала осуществлялось одновременно со строительством оросительных систем, и сейчас на его базе уже орошается 110 тыс. га засушливых земель Херсонской и Запорожской областей. Канал позволил завершить строительство первой очереди Каховской оросительной системы площадью 260 тыс. га.

Каховский канал — уникальное сооружение, воплотившее в себе лучший отечественный и зарубежный опыт гидротехнического строительства. По всей его 130-километровой трассе обеспечена надежная противофильтрационная защита, автоматически регулируется расход воды. Канал по пропускной способности является одним из самых крупных в стране. Его головная насосная станция мощностью 530 м3/с поднимает воду на высоту 24 м. Оросительные системы оснащены закрытыми трубопроводами и высокопроизводительными дождевальными машинами. На землях, орошаемых водами Каховского магистрального канала, большинство хозяйств получает с 1 га по 42–45 ц зерновых, 570–630 ц кормовых корнеплодов, 75–80 ц сена многолетних трав.

Большую роль в развитии экономики Туркменской ССР играет Каракумский канал им. В. И. Ленина, уже преодолевший тысячекилометровый рубеж. Рукотворная трасса искусственной реки коренным образом преобразила жизнь огромной территории. В 1979 г. из Каракумского канала орошалось более 450 тыс. га земель, на которых выращивается почти половина производимого в республике хлопка. На целинных землях построены современные совхозы с благоустроенными поселками, проложены сотни километров шоссейных дорог и линий электропередач. Решена одна из острейших задач по гарантированному водоснабжению обширной территории, промышленных предприятий и газопромыслов.

Приход воды по каналу в острозасушливую Прикаспийскую зону открывает большие перспективы для преобразования западных районов республики. 179-километровый «рукав» юго-западного участка Каракумского канала повернет от Казанджика к югу и даст воду району сухих субтропиков — единственному в нашей стране месту, где вызревают финики. Канал и водохранилище на 650 млн. м3 обводнят массивы пастбищ, а на Мешхед-Миссарианском плато оросят до 193 тыс. га туркменской целины. На новых землях расцветут финиковые и оливковые рощи, будут заложены плантации инжира, хурмы, грецкого ореха, миндаля, граната, крупные виноградники.

В 1980 г. приняла 1 млрд. м3 воды первая чаша руслового водохранилища. Всего в Туямуюнской излучине, по мере заполнения основного бассейна и наращивания бетонной плотины, разольется три водосборника, что позволит довести емкость хранилища до 8 км3. Туямуюнский гидроузел на Амударье в Узбекской ССР оросит 200 тыс. га новых и 300 тыс. старопахотных земель. Его гидротурбины ежегодно станут вырабатывать более 1 млрд. кВт*ч энергии. В водохранилище гидроузла будут разводить мальков для воспроизводства рыбных запасов Амударьи.

На карте крупных строек Казахстана значится ущелье Бартогай, расположенное в горах Заилийского Алатау на высоте более 1 тыс. м над уровнем моря. Здесь, в 140 км от Алма-Аты, в 1980 г. началось строительство гигантского водохранилища. Уже четко обозначились контуры каменно-земляной плотины, которая прервет стремительный бег р. Чилик. Ее воды по магистральному каналу длиной свыше 170 км достигнут пос. Чемолган. Новый гидротехнический узел оросит 270 тыс. га засушливых, но плодородных земель, улучшит водообеспеченность хозяйств Чиликского, Энбекшиказахского, Илийского, Талгарского и Каскеленского районов, где создана одна из крупнейших республике баз по производству фруктов, винограда и овощебахчевых культур.

Строительство Бартогайской оросительной системы — часть осуществляемой в республике обширной программы по повышению эффективности земледелия. За последние годы введены в эксплуатацию крупные Бадамское, Чарское, Карагалинское и другие рукотворные моря, накопившие десятки миллиардов кубометров влаги. Сооружаются и более мелкие хранилища, которые «перехватывают» вешние воды и потоки из моренных озер, образованных тающими ледниками. Все это позволило увеличить за пятилетку орошаемое поле Казахстана более чем на 300 тыс. га. Занимая всего около 5 % пашни, оно уже дало четверть всей продукции полеводства республики.

За годы десятой пятилетки в нашей стране введено в действие свыше 5 млн. га орошаемых и осушенных земель, В 1980 г. их было уже около 30 млн. га — 9 % общей площади пашни и многолетних насаждений. Мелиорация приобретает все большее значение, становится важным средством интенсификации сельскохозяйственного производства.

Богатство голубых гектаров

Исключительно большие водные ресурсы требуются для дальнейшего развития рыбного хозяйства. Многочисленны и разнообразны рыбохозяйственные водоемы нашей страны. Общая протяженность рыбохозяйственных рек составляет 300 тыс. км, а водное зеркало сотен тысяч прудов — приблизительно 300 тыс. га.

В 1978 г. было принято постановление ЦК КПСС и Совета Министров СССР «О мерах по дальнейшему развитию рыбоводства и увеличению вылова рыбы в пресноводных водоемах страны». В нем отмечается, что в результате осуществления ряда мер по охране и воспроизводству ценных видов рыб, регулированию промышленного рыболовства и защите водоемов от загрязнения за последние годы несколько возросли уловы рыбы в озерах, реках и водохранилищах. Наращиваются мощности специализированных товарных прудовых и озерных рыбоводных предприятий. Производство товарной рыбы на этих предприятиях увеличилось за последние 10 лет более чем в 3 раза.

Однако, указывалось в постановлении, объемы вылова рыбы в местных водоемах еще не позволяют удовлетворить потребности населения. Министерство рыбного хозяйства СССР, Министерство сельскогохозяйства СССР, местные партийные и советские органы недостаточно обеспечивают использование больших резервов пресноводных водоемов — озер, рек, водохранилищ, прудов, мелиоративных систем и бассейнов-охладителей тепловых электростанций для пополнения рыбной продукцией продовольственных ресурсов страны.

В целях дальнейшего развития рыбоводства и увеличения вылова рыбы в пресноводных водоемах страны ЦК КПСС и Совет Министров СССР наметили увеличить к 1985 г. по сравнению с 1977 г. уловы рыбы в пресноводных водоемах в 2 раза и довести общий вылов до 924 тыс. т, в том числе рыбы, выращенной в прудах и озерных хозяйствах, до 504 тыс. т. Рыбопродуктивность прудов предлагалось повысить в среднем в 1,8 раза, а действующих товарных озерных предприятий — в 2 раза.

Во исполнение этих задач предусматривается осуществить техническое перевооружение всех прудовых предприятий, построить и реконструировать 150 тыс. га прудовых площадей, ввести в эксплуатацию 600 тыс. га озерных хозяйств. За счет проведения рыбоводно-мелиоративных работ планируется значительно увеличить вылов рыбы в озерах Ладожском, Чудском, Онежском, Ильмень, Севане, Чаны, Убинском, Байкале, Балхаше, Ханка.

Постановлением предусматривалось усилить научные исследования в области рыбоводства и рыболовства, в 1979–1982 гг. осуществить разработку научных основ рационального использования рыбных запасов внутренних водоемов страны, мероприятий по повышению рыбопродуктивности крупных озер и водохранилищ Северо-Запада, Сибири и Дальнего Востока, интенсификации промышленного рыбоводства.

ЦК КПСС и Совет Министров СССР, придавая большое значение механизации и автоматизации тяжелых и трудоемких работ при производстве рыбы, добычи ее в реках, озерах и водохранилищах, наметили увеличить выпуск машин и оборудования для рыбоводства, организовать серийное производство установок круглосуточного выращивания рыбы, машин и линий.

Постановлением предложено осуществить комплекс мер по защите природной среды, увеличению водности, охране вод и биологических ресурсов малых рек и других водоемов, а также по строительству плотин и зарыблению создаваемых при этом водохранилищ.

Большие работы по развитию рыбного хозяйства выполнены в РСФСР. Здесь разработаны и осуществляются комплексные мероприятия, направленные на крутой подъем продуктивности водоемов. Например, в республике в десятой пятилетке созданы озерные товарные хозяйства с площадью водного зеркала около 100 тыс. га и проведено зарыбление почти 700 тыс. га озер, не входящих в состав специализированных хозяйств, что позволяет увеличить в них вылов рыбы почти вдвое.

Многое сделано в дельте Волги. Блестящей серебряной косой вьется река по степи и, подбегая к Каспийскому морю, расплетается на великое множество рукавов, притоков и малых рек. Даже с высоты не охватишь взглядом ширь дельты. Весной и в начале лета паводок щедро заливает плоские равнины между протоками — их называют полоями. И чем обильнее залиты они водой, тем лучше для нереста рыбы, тем больше будет сазана, судака, леща и знаменитой красноперки.

За прошедшие десятилетия на берегах великой русской реки выросли большие города. Ее перегородили плотины могучих электростанций, живительную влагу требует и орошаемые земли дельты. Откуда они берут воду?

Конечно, из Волги. Вот и начала река, особенно в низовье, скудеть весенней водой, беднее стали и нерестилища рыб. Как помочь Волге превратиться вновь в обильное поле, с которого можно получать богатые урожаи ценные пород рыб, и при этом не нарушить интересы энергетики и сельского хозяйства?

Специалисты нашли выход: в 40 км севернее Астрахани, в восточной части дельты, появилось инженерное сооружение — вододелитель, который регулирует поступление воды в дельту, обеспечивает благоприятные условия для размножения рыбы на сотнях тысяч гектаров отмелиорированных естественных нерестилищ. Его комплексные испытания прошли успешно. Это — уникальное сооружение, подобного которому нет в мире. В инженерном отношении гидротехнические сооружения вододелителя более сложны, чем любая электростанция из каскада волжских ГЭС. Пропуская рыбу и суда через свои рыбоподъемники и судоходные шлюзы, он направляет при этом необходимое количество воды на нерестилища. При этом вододелитель — главное ядро целого комплекса сооружений. Построена также 80-километровая дамба, которая идет вдоль, а не поперек дельты. Таким образом, создана целая система сооружений со своими гидроузлами и судоходными шлюзами, обеспечивающими жизнедеятельность такого сложного организма, как дельта Волги.

Основная задача нового сооружения — обводнение искусственных нерестилищ в восточной части Астраханской дельты. Вододелитель при недостатке влаги пропускает по р. Бузан — притоку Волги — в восточную часть дельты: 10 тыс. м3 воды в секунду. Это позволяет создать более чем на 300 тыс. га восточной части волжской дельты половодье с управляемыми сроками, нужной продолжительностью подъема, пика и спада уровня воды — оптимальные условия нереста рыб и нагула молоди. С этой площади можно будет получать «урожаи» рыбы, равные тем, что дает вся дельта.

Ниже плотины Волжской ГЭС им. XXII съезда КПСС был построен завод по выращиванию молоди осетровых для пополнения водоемов. Первоначально он сооружался в расчете на выращивании менее 4 млн. штук молоди осетра и белорыбицы. В 1978 г. было выращено около 15 млн. Постепенно изменился и профиль предприятия. Размещение его оказалось как нельзя более удачным для развития молоди белуги, этой царь-рыбы Каспия.

Белуга — самая крупная и быстро растущая из осетровых — раньше всех идет и на нерест. Начинает откладывать икру в реке при температуре плюс 8 °C, в марте. Инкубация икры и выращивание белужат на заводе заканчивается в середине июня. Ежегодно шесть-семь миллионов белужат скатываются от заводского берега вниз по Волге.

В начале июля приходит на нерест севрюга. Рыбоводы отлавливают маточное стадо и до конца сезона успевают полностью заселить севрюжатами все пруды, а в некоторых вырастить молодь по два раза. В 1978 г. предприятие дало около 10 млн. мальков.

За последние годы на Нижней Волге возникла индустрия рыборазведения с хорошо отработанной технологией и кооперацией. Теперь, например, волгоградцы не выращивают молодь белорыбицы для Каспия. Мальки этой деликатесной рыбы — излюбленное блюдо хищников. Там, где крохотных белорыбиц выпускали в реку, заранее толклись у берега, надеясь на поживу, зубастые сородичи. Много нежных рыбок уничтожалось на пути к морю, в результате к местам постоянного обитания добирались лишь единицы. Выход был найден. Волгоградский завод, которому легче отлавливать маточные экземпляры, стал поставлять проинкубированную икру белорыбицы на Александровский завод, расположенный в дельте Волги. Но и александровцы, вырастив молодь, не выпускают ее теперь в реку, а вывозят прямо в море.

Рыборазводные заводы из года в год расширяют производство молоди и заселяют ценными породами рыб не только Каспий, но и другие естественные водоемы страны в центральных районах России.

Важнейшим объектом промысла становится бестер — искусственный гибрид белуги и стерляди, созданный советскими ихтиологами. В 1977 г. волгоградцы отправили на рыборазводные заводы Краснодарского края 7 млн. икринок бестера. Выращенная молодь выпущена в водоемы западной части Кубани.

В настоящее время Волга — крупнейший в стране район промышленного рыборазведения. В 1955 г., почти одновременно с Куйбышевской ГЭС, был введен в эксплуатацию первенец осетрового рыбоводства на Волге — Казанский завод. Затем к нему постепенно присоединились Бертюльский, Сергеевский, Житнинский, Александровский. Созданы две группы нерестово-выростных хозяйств общей площадью 10 тыс. га прудов.

За последние семь лет местные предприятия выпустили в реку 243 млн. штук молоди осетровых.

Люди буквально спасли от полного вымирания и белорыбицу. Рыба эта уникальна. Она обитает только в Волге, где поселилась с конца ледникового периода. На нерест белорыбица поднималась в р. Белую, приток Камы. Волжско-камский каскад гидроузлов затруднил нерест этой рыбы.

Помогли белорыбице сотрудники Каспийского научно-исследовательского института рыбного хозяйства. Они разработали биотехнику искусственного размножения белорыбицы и подращивания ее молоди. С тех пор в Волгу выпущено около 35 млн. штук молоди белорыбицы. В 1970 г., по подсчетам, заходило на нерест 200 особей, в 1972 — 3 тыс., в 1974 — 8 тыс., а в 1976 — более 200 тыс. экземпляров.

Люди научились помогать рыбе в период размножения установкой искусственных нерестилищ. Только в Куйбышевском водохранилище их делают от 400 до 600 тыс. Такая же работа проводится на всех водохранилищах.

Рыбоводы Украины подтвердили на практике выводы ученых о возможности выращивания в промышленных масштабах на 1 м2 водной поверхности около 100 кг рыбы за год. Лимановское хозяйство Харьковской области выпустило в водоем-охладитель электростанции 1,317 млн, штук молоди. Каждый малек весил 25 г. За сезон карп стал тяжелее в 15–20 раз. Выход товарной рыбы с 1 м2 тепловодного садка составил более 100 кг.

Много лет на Байкале шел интенсивный промысел омуля. Каждую путину в сети и неводы попадало до 80–90 тыс. ц этой рыбы. Постепенно сложилась ситуация, когда ни естественным размножением, ни искусственным разведением невозможно стало полностью восстановить омулевое стадо. Возникла необходимость крайней меры: полного запрета промышленного лова. На «отдых» Байкалу отвели семь лет.

Летом 1976 г. этот срок подошел к концу. Сначала была разведка, цель которой определить плотность омулевых стад и их распределение по Байкалу, получить данные о ходе воспроизводства омуля и установить такой режим рыболовства, который бы в дальнейшем не причинял ущерба экологическому балансу озера. Она показала, что кормовые угодья Байкала за прошедшие десять лет заметно оскудели. Это вызвано переменами в тепловом равновесии озера, связанными с общим похолоданием арктической зоны. Несомненный вред нанесло и загрязнение нерестовых рек отходами промышленных предприятий.

Ухудшение условий питания омуля явилось причиной того, что он начинает размножаться с опозданием на два-три года и откладывает в два раза меньше икринок, чем в предшествующие годы. Отсюда вывод: при массовом лове рыбы рассчитывать на быстрые темпы воспроизводства ценной породы оснований нет.

Вместе с тем разведка подтвердила расчет: временный запрет на промысел способствовал увеличению омулевых стад. Положительную роль сыграл комплекс мероприятий по искусственному разведению рыбы. Омуля в Байкале стало больше. Этот факт позволил ученым разработать предложения о возобновлении промышленного лова на Байкале. В 1979 г. поголовье омуля было полностью восстановлено.

Большую роль в восстановлении омулевого стада сыграли рыбоводные заводы. Отныне ежегодно в озеро выпускают по нескольку миллиардов искусственно выращенных мальков.

В настоящее время защищена от промышленных сточных вод р. Москва. И как следствие этого на городских водоемах зарегистрировано более 20 рыбных нерестилищ. И самое удивительное, что такие нерестилища появились и рядом с гигантским производственным комплексом «автограда»-ЗИЛа.

Долгий путь прошли малютки, прежде чем попали на берега р. Москвы. Балтийское море — опорный пункт ВНИИ прудового хозяйства на оз. Боровое — Серебряный Вор. По такому маршруту доставили в р. Москву 200 тыс. личинок — будущих судаков. Одна за другой порции «живого груза» перекочевали из полиэтиленовых мешков в речную воду. Как показали первые наблюдения ихтиологов, эксперимент проходит успешно.

Возвращается былое рыбное богатство в р. Москву, а скоро запасы эти превысят даже самые высокие показатели прошлых лет. Работники инспекции рыбоохраны наметили создать на Карамышевском водохранилище рыбоводное садковое хозяйство.

В 1979 г., в столичные водоемы удалось выпустить почти полмиллиона мальков, причем главными объектами внимания стали ценные виды, особенно почитаемые рыболовами, — жерех, лещ, судак. Получается так, что уже в обозримом будущем столичные водоемы смогут конкурировать с самыми популярными центрами любительского и спортивного рыболовства. Именно к этому стремятся работники всех служб, следящих за «здоровьем» рек и прудов. Часто можно увидеть за работой активистов общественного совета, созданного при городской инспекции рыбоохраны. И даже для самых юных энтузиастов — членов школьных отрядов «голубой патруль» — находится немало дел.

Конечно, не только рыбакам желательно оживление рек. Прежде всего оно означает, что все здоровее становится, несмотря на гигантский рост индустриальной мощи, экологическая среда города. И теперь равно приятны титулы «самой зеленой» и «первой по богатству рыбных запасов» среди крупнейших столиц мира, которыми по праву отмечена Москва.

На июльском (1978 г.) Пленуме ЦК КПСС товарищ Л. И. Брежнев подчеркивал, что для пополнения продовольственных ресурсов следует конкретнее заняться и производством рыбы за счет лучшего использования местных водоемов.

Интенсивно развивается прудовое рыбоводство в Узбекистане. 13 специализированных хозяйств добыли в 1979 г. 167 тыс. ц рыбы, к 1982 г. планируется увеличить улов еще на 100 тыс.

Быстро растет прудовое хозяйство Латвии. Только в рыбосовхозе «Нагли» площадь нагульных прудов в 1980 г. увеличилась на 350 га. Весной 1980 г. было получено 9 млн. годовиков и 2 млн. двухлеток карпа. Предполагается, что к осени совхоз получит не менее 2 тыс. т товарной рыбы, а на следующий год обеспечит молодью все пруды рыборазводящих хозяйств республики.

«Донрыбокомбинат» — высокоинтенсивное прудовое рыбное хозяйство. В среднем здесь 1 га голубой нивы дает свыше 26 ц продукции. В 1979 г. в магазины Донецкой области было поставлено 92 тыс. ц высококачественной рыбы.

Важным условием повышения продуктивности прудов явилось разведение ценных пород рыб — таких, как чешуйчатый и рамчатый карпы. Они хорошо используют естественную кормовую базу водоемов и быстро растут. Общий вес одного потомства чешуйчатого карпа достигает 50 т. Это вес кита.

На «Донрыбокомбинате» с успехом внедряют «уплотненные посадки рыб». С этой целью в пруды к карпам подсаживают растительноядных рыб — белого амура, белого и пестрого толстолобиков. Для разведения растительноядных рыб в «Донрыбокомбинате» на базе водоема-охладителя Мироновской ГРЭС построен инкубационный цех мощностью 150 млн. деловых личинок и специализированный питомник.

«Заселение» водохранилищ растительноядными рыбами дает быстрый весомый результат. Например, в рукотворные моря Украины еще осенью 1975 г. было выпущено 6,5 млн. толстолобиков-двухлеток весом 300–400 г. Ко времени отлова каждый из них весил в среднем более 3 кг. В водохранилища страны предполагается выпустить 23–25 млн. рыб-двухлеток. Это и другие мероприятия позволят увеличить вылов рыбы в таких водоемах на 31 %, доведя его в 1980 г. почти до 900 тыс. ц.

Западная Сибирь известна как кладовая нефти и газа. Но она всегда оставалась и хорошей рыбной кладовой. Длина рек только в одной Тюменской области равна 23 тыс. км, к тому же здесь около 300 тыс. озер, водное зеркало которых превышает 6,5 млн. га. Эту область по праву называют деликатесным рыбным цехом: она дает половину уловов всех ценных озерных рыб. К концу десятой пятилетки в области действовало около 18 товарных рыбных хозяйств, работали базы по сбору икры и инкубационные цехи на 10–12 млрд. икринок. В настоящее время здесь продолжаются работы по созданию прудовых и озерных питомников. В них уже выращивают 85 млн. годовиков сиговых, карпа, осетра и нельмы.

В нашей стране имеется свыше 200 тепловых, атомных электростанций и электроцентралей. Использование их сбросных вод открывает большие резервы для эффективного рыбоводства. Потенциальные возможности теплового рыбоводства оцениваются примерно в 1 млн. ц товарной рыбы.

Охрана вод суши

Проблемы стока

Большое значение для охраны вод суши имеют Основы водного законодательства Союза ССР и союзных республик, которые были приняты Верховным Советом СССР в декабре 1970 г. В законе подчеркивается, что в результате Великой Октябрьской социалистической революции вода, как и другие богатства в нашей стране, стала общегосударственной собственностью, достоянием народа, что создало необходимые предпосылки для ее планового, комплексного использования с наибольшим эффектом в интересах всего общества.

На основе принятого закона во всех союзных республиках утверждены водные кодексы, которые учитывают специфику состояния и использования водных ресурсов с учетом географических и социально-экономических условий жизни и деятельности каждой республики.

В советском водном законодательстве установлено, что все воды, водные объекты подлежат охране от загрязнения, засорения и истощения, влияющих на качество воды таким образом, что могут причинить вред здоровью населения, повлечь за собой уменьшение рыбных запасов, ухудшить условия водоснабжения и вызвать другие неблагоприятные последствия в результате изменения физических, химических, биологических свойств воды, снижения способности к естественному очищению, нарушения гидрологического и гидрогеологического режимов. Четкое и ясное определение в законодательстве понятия загрязнения вод требует от всех водопользователей при использовании и сбросе вод соблюдения необходимых требований, которые изложены в Правилах охраны поверхностных вод от загрязнения.

Значительное место в водном законодательстве уделено вопросам государственного учета и планирования потребления вод. Первоочередными задачами учета вод является установление имеющегося количества и качества, а также данных об использовании вод для нужд населения и народного хозяйства. С этой целью в стране введена ежегодная статистическая отчетность. Статистические данные позволяют судить не только о количестве забранной из источников воды, но и о ее тратах на различные цели, а также иметь данные о количестве различных веществ, вносимых в водоемы сточными водами.

Все эти данные необходимы для научно обоснованного планирования потребления воды и ее правильного распределения по потребителям, а также для разработки новых водохозяйственных и водоохранных мероприятий. При планировании учитываются также данные Государственного водного кадастра, включающего количественную и качественную характеристику водных ресурсов, регистрацию водопользований и данные учета использования вод и водохозяйственные балансы, составляемые по бассейнам рек, экономическим районам, союзным республикам и СССР в целом. С 1978 г. по всей стране введена единая система ведения Государственного водного кадастра.

«Кадастр» — в переводе с французского значит «реестр». Водный кадастр, если сказать коротко, это свод сведений о водных объектах, водных ресурсах и гидрологическом режиме вод.

Практика использования рек и озер для судоходства, орошения, водоснабжения, опыт проектирования и строительства гидротехнических и транспортных сооружений, требования защиты населенных пунктов от наводнений уже давно привели к необходимости сбора сведений о «поведении» вод и публикации их в специальных справочных изданиях. Первым таким крупным изданием в России стали «Сведения об уровне воды на внутренних водных путях», где с 1881 по 1915 г. публиковались результаты наблюдений. Но практика требовала более полных сведений о водных объектах и гидрологическом режиме рек, озер и морей. Поэтому уже на конференции по изучению естественных производительных сил России, которая состоялась в Москве весной 1923 г., отмечалось, что необходимо работу по составлению водного кадастра признать спешной, а формы кадастра установить единообразными. Практически же эта работа была начата лишь в 1931 г. Много внимания уделял ей В. В. Куйбышев, в то время председатель Госплана СССР. В 1940 г. было в основном завершено издание кадастра поверхностных вод СССР в виде порайонных справочников по водным ресурсам, сведений об уровне воды на реках и озерах страны, материалов по режиму рек и кадастра болот.

Они важны для составления многолетних характеристик того или иного водного объекта. Важно по первому требованию плановых, проектных и хозяйственных организаций дать исчерпывающие характеристики любой реки или речушки, озера или ледника по данным на сегодняшний день. На территории страны работают более 6 тыс. гидрологических постов, около 400 гидрометеообсерваторий и станций, которые ежедневно ведут тщательные наблюдения за водными объектами.

В соответствии с Основами водного законодательства Союза ССР и союзных республик в водный кадастр будет включена информация об учете вод по количественным и качественным показателям, регистрация водопользований, а также данные учета использования вод. Кадастр станет настоящей энциклопедией всех вод нашей страны. Сведения о подземных источниках и об использовании вод будут обобщать Министерство геологии СССР и Министерство мелиорации и водного хозяйства СССР.

Работа эта поистине колоссальная. Может возникнуть вопрос: а не потребуется для сбора и систематизации такого большого объема ежедневных данных о режиме многих тысяч рек, водохранилищ, озер целой армии счетных работников? Нет, не потребуется. Уже несколько лет эти данные заносятся на перфокарты: для ведения водного кадастра создается автоматизированная информационная система, оснащенная ЭВМ. Это позволит оперативно обслуживать народное хозяйство необходимыми сведениями о водных объектах, водных ресурсах, режиме, качестве и использовании вод.

Кроме того, появятся периодические издания, содержащие аналогичные сведения, необходимые для плановых и проектных работ. Среди них каталоги рек и каналов, озер и водохранилищ, ледников, подземных вод. Предполагается регулярно печатать подробные гидрологические ежегодники. Издания, выходящие примерно раз в 5—10 лет, будут содержать многолетние характеристики водных ресурсов, режима и качества вод и другие данные.

В 1979 г. вышла одна из серий Государственного водного кадастра — сведения о режиме вод, водных ресурсах и их использовании за 1978 г., составленная по новой системе. Намечен пуск автоматической информационной системы сбора, обработки и выдачи данных государственного учета вод, которая создается в составе ВНИИ гидрометеорологической информации в Обнинске.

В соответствии с Основами водного законодательства Союза ССР и союзных республик Совет Министров СССР принял в 1976 г. постановление «О порядке разработки и утверждения схем комплексного использования и охраны вод».

В целях определения основных водохозяйственных и других мероприятий, направленных на удовлетворение перспективных потребностей в воде населения и народного хозяйства, а также на охрану вод и предупреждения их вредного воздействия, постановлением предусматривается разработка генеральных, бассейновых и территориальных схем комплексного использования и охраны вод.

Цель генеральной схемы комплексного использования и охраны вод — определение принципиальных направлений развития водного хозяйства СССР. На основе ее разрабатываются бассейновые схемы для рек и других водных объектов, а также территориальные — для экономических районов страны, областей и краев, союзных и автономных республик. Намечаемые в схемах мероприятия должны обеспечить наиболее эффективное использование вод (с учетом первоочередного удовлетворения потребностей в воде населения) путем регулирования стока вод, принятия мер по экономному их расходованию и к прекращению сброса неочищенных сточных вод на основе совершенствования технологии производства, схем водоснабжения и прочих технических приемов.

Генеральная схема комплексного использования и охраны водных ресурсов четко определяет технико-экономическую целесообразность и очередность проведения крупнейших водохозяйственных мероприятий. К ним относится переброска части стока северных рек в бассейн Волги и сибирских рек — в Казахстан и Среднюю Азию.

Водные ресурсы распределены по территории СССР неравномерно. Только 20 % общего стока вод приходится на экономически развитые районы страны, где проживают 70 % населения, остальные запасы влаги находятся в труднодоступных неосвоенных районах. Использовать их — такова цель разрабатываемых проектов.

Особенно серьезными проблемами являются обмеление Каспия и осолонение Азовского моря. С каждым годом в этом регионе увеличивается расход воды на различные хозяйственные нужды. Вода нужна промышленным и сельскохозяйственным предприятиям. В Поволжье создается зона гарантированного производства зерна. Орошаемым становится и кормовое поле хозяйств. Необходимость в воде диктуется, наконец, и проблемами сохранения рыбопродуктивности.

Естественно, что в создавшихся условиях упор делается на экономное расходование воды. Все более совершенными становятся оросительные системы — с их помощью при наименьшем расходе влаги достигается наивысшая отдача поливного гектара. Однако экономить воду уже недостаточно — нужно существенно пополнить ее запасы. Помочь Волге смогут северные реки.

Намеченные проектные решения по своим масштабам и объемам работ не имеют себе равных в мире. Воду дадут Онежское озеро, р. Сухона и другие источники, расположенные на севере Европейской части страны. Кроме того, часть стока Печоры поступит в Волгу через Каму. Надо сказать, что для переброски воды будут использованы как существующие каналы, в частности Волго-Балтийский водный путь, так и новые магистрали. Это удешевит работы по реализации проекта.

В результате стабилизуется уровень Каспия, увеличится выработка электроэнергии на каскаде волжских гидростанций. Улучшится водохозяйственная обстановка и в районе Азовского моря — часть волжской воды поступит в Цимлянское водохранилище, а оттуда на территорию Ростовской области, Краснодарского и Ставропольского краев. Повысив уровень воды, можно больше брать ее из Волги, а заодно помочь и Дону.

Для переброски части стока северных рек необходимо будет построить множество водохранилищ, каналов большой протяженности, крупные гидроузлы и насосные станции. Вода пойдет по существующим руслам рек и каналов. По своим масштабам — это грандиозное гидротехническое строительство, которое охватит огромные по протяженности территории. По данным, приведенным Л. В. Дунин-Барковским и Н. И. Моисеевым (1976), общая площадь территории, в пределах которой может осуществляться перераспределение стока, равна 12 млн. км2. Это составляет более половины территории СССР и больше территории всей Европы. Естественно, такое крупное строительство будет нуждаться в перестройке многих природных и народнохозяйственных объектов. К последним относятся территории, занимаемые сельским хозяйством, промышленностью, населенными пунктами и другими объектами. Потребуется осуществить перенос населенных пунктов и промышленных предприятий или проведение их инженерной защиты.

Многообразны возможные воздействия перераспределения стока на процессы, протекающие в атмосфере. Их характер и глубина в значительной мере зависят от масштабов проводимых мероприятий и могут вызвать колебания температуры и влажности приземного слоя воздуха и почвы, теплового и водного баланса отдельных регионов, а также изменения условий формирования влагозапасов в атмосфере, влагопереноса и осадков в масштабе крупных регионов и континентов. Будут затронуты и процессы, протекающие в биосфере — этой специфической земной оболочке, носителе жизни, проникающей во все остальные оболочки Земли и взаимосвязанной с ними. В частности, перераспределение стока может повлиять на экосистемы суши, факторы плодородия почв, фито- и биоценозы, биоредуценты; на формирование биогенного стока, биопродуктивность водоемов; на взаимосвязи экосистем суши и водной среды; на условия труда и отдыха человека, качественные показатели биосферы, а также на региональные и глобальные изменения экосистем. И не случайно поэтому к изучению этой проблемы привлечены специалисты самого различного профиля — гидротехники, гидрологи, лесоводы, биологи, ихтиологи, медики и др.

Среди широкого круга вопросов (социального, экономического, технического и др.), возникающих при решении этой проблемы, первостепенное место занимают медицинские аспекты. Будучи направлены на охрану санитарных интересов и здоровья населения, они призваны обеспечить в районах, территориально тяготеющих к зонам переброски, благоприятные условия жизни и водопользования населения.

Цель исследований, направленных на улучшение условий жизни и водопользования населения в районах перераспределения речного стока, — обоснование санитарных заданий, направленных на разработку мероприятий по обеспечению соответствия качества воды гигиеническим требованиям, санитарно-эпидемиологического благополучия в отношении водных вспышек кишечных и природно-очаговых инфекций; ограждение населенных пунктов, попадающих в зону влияния водохранилищ и каналов, от последствий возможных затоплений и подтоплений.

Выбор оптимальных вариантов трасс переброски стока является важным вопросом. Как правило, намеченные трассы переброски стока проходят по территории с развитым сельским хозяйством и крупными промышленными центрами. В связи с этим представляется важным проведение комплексных гигиенических исследований по оценке влияния на водоемы предприятий химической, нефтехимической, машиностроительной и других видов промышленности и объектов сельского хозяйства. Среди последних особое место занимают крупные животноводческие комплексы. Одной из важнейших задач переброски части стока северных и сибирских рек, как известно, является дальнейшее развитие орошаемых земель южных районов страны. Магистральные каналы будут проходить через крупные орошаемые местности, в их воду со стоками сельскохозяйственных полей могут поступать пестициды и т. п.

Важную роль в переброске речного стока сыграют подземные воды. Главным образом приходится учитывать их возможную гидравлическую связь с поверхностными водами. Это особенно важно в условиях изменяющегося гидрологического режима при переброске части стока рек.

В формировании качества воды в районах Европейского Севера и Сибири наряду с антропогенным фактором значительное влияние оказывают и природные особенности. Из них прежде всего следует отметить характерную для всех этих районов чрезвычайно низкую минерализацию, «бедность» такими микроэлементами, как фтор, высокую цветность, повышенную окисляемость, обусловленные высоким содержанием гуминовых веществ.

Проектируемая переброска части стока рек требует проведения широких и повсеместных эпидемиологических исследований в целях предотвращения возможного распространения инфекционных заболеваний.

Теоретическая разработка проблемы охраны водоемов от загрязнения и практическая деятельность в этой области показали, что не может быть единого критерия оценки вредного влияния сточных вод на водоем в силу различного характера водопользования (для питьевых, культурно-бытовых и разнообразных народнохозяйственных нужд). Согласно Правилам охраны поверхностных вод от загрязнения сточными водами (1974 г.), водоемы и водотоки (водные объекты) считаются загрязненными, если показатели состава и свойств воды в них изменились под прямым или косвенным влиянием производственной деятельности и бытового использования населением и стали частично или полностью непригодными для одного из видов водопользования. В настоящее время предельно допустимые концентрации установлены для 633 веществ.

Бессточные производства

Проблема сохранения, а в ряде случаев и улучшения качеств водных ресурсов в нашей стране решается в общегосударственном масштабе. Ее решение связано, в первую очередь, с разработкой новых производственно-технологических процессов и оборудования, обеспечивающих максимальную утилизацию и обеззараживание промышленных отходов. Внедрение бессточных технологий практически полностью решает проблему защиты водоемов от загрязнения. Однако пока еще не существует реальной возможности перехода к ней всех производственных процессов. Задача дня — всемерно ускорить создание и внедрение в народнохозяйственную практику принципов и элементов безотходной технологии будущего, и в этом направлении огромную роль в наши дни играет решение проблемы замкнутого цикла водоснабжения промышленных предприятий.

С 1970 г. полностью переведена на оборотное водоснабжение обогатительная фабрика действующего медеплавильного комбината. Как показали специальные наблюдения, существенного влияния на технологический процесс оборотная вода не оказывает и может быть использована во всех технологических операциях.

Схема оборотного водоснабжения на фабрике несложна. Сточные воды транспортируются на расстояния 2,5 км в хвостохранилище, где после отстаивания твердых частиц и частичной естественной очистки от солей и реагентов направляются через коллектор в оборотную систему водоснабжения и используются в технологическом процессе. За сутки обогатительная фабрика потребляет 13 500 м3 воды. И если раньше она сбрасывалась, загрязняя открытый водоем, то теперь ежедневно 10 200 м3 воды циркулирует в замкнутом цикле. Оборотное водоснабжение позволило сократить до минимума расход свежей технической воды, что является актуальным для фабрики, расположенной в районе с ограниченным дебитом речного стока.

В промышленности до 45 % всего количества потребляемой воды идет в теплообменные аппараты на охлаждение. Переход от водяного охлаждения к воздушному позволит сократить на 70–90 % расход воды на ряде предприятий нефтехимической, химической, металлургической и других отраслей промышленности.

На XXV съезде КПСС подчеркивалось, что масштабы хозяйственной деятельности в десятой пятилетке, специфика современных технологических процессов, применяемых в промышленности, в особенности в таких отраслях, как металлургия и химия, делают необходимыми специальные мероприятия по охране окружающей среды.

Одним из таких мероприятий, в частности, стал переход на использование оборотных вод. Например, в химической промышленности в 1980 г., несмотря на значительный рост объемов производства, значительно сократился сброс промышленных сточных вод в водоемы, а расход свежей воды на производственные нужды остался на уровне 1975 г.

Анализ состояния технологии в разных отраслях промышленности показал, что до последнего времени традиционно допускалась одна и та же ошибка — соединение всех сточных вод в один поток и их объединенная очистка. В результате резко ухудшалась работа очистных сооружений и осложнялся процесс создания замкнутых водооборотных систем. В настоящее время в ряде отраслей уже разработаны и реализованы замкнутые водооборотные схемы с локальной очисткой, что позволило значительно снизить удельные нормы водопотребления и в некоторых случаях полностью исключить сбросы сточных вод в водоемы.

С точки зрения современных требований, чем больше отходов, тем хуже технология. Большое количество сбросных вод — объективный показатель несовершенства действующей технологической схемы. Вот почему часто используемые технологические методы и схемы практически не позволяют создать экономически приемлемую замкнутую водооборотную систему. В таких случаях приходится пересматривать существующие методы и схемы, стремиться к созданию бессточной технологии.

В середине 70-х годов в области производства термической фосфорной кислоты, перерабатываемой на кормовые фосфаты и другие фосфорные соли, был применен способ, полностью исключающий сброс с площадки предприятия фосфорсодержащих стоков и шламов. Благодаря многократному использованию одного и того же объема воды в нескольких технологических операциях, связанных с транспортировкой и хранением фосфора, общие количества фосфорсодержащих стоков сократились в 3, а потребление чистой воды — почти в 2 раза. При этом очистка стоков на производстве ограничивается простым механическим отделением взвешенных веществ от воды; вся осветленная вода без нейтрализации целиком используется для гидратации фосфорного ангидрида. Небольшое количество шлама, выделяемое при осветлении сточной воды, утилизируется путем сжигания его в смеси с фосфором через форсунки башни сжигания. При этом способе полностью исключаются потери сырья с жидкими и твердыми отходами производства, а также опасность загрязнения поверхностных и грунтовых вод в районе предприятия.

Бессточным предприятием является и медеплавильный завод Алмалыкского горно-металлургического комбината. На свои нужды он расходует 40 % воды (от общего водопотребления комбината), а его оборотное водоснабжение составляет 87 % (от общего водопотребления завода). Оборотной водой завод обеспечивается четырьмя системами водоснабжения: первая обеспечивает потребителей металлургического производства; вторая — сернокислотного; третья — шламово-купоросного цеха и цеха катанки; четвертая — цеха разделения воздуха (кислородная станция). Свежая вода идет только на подпитку оборотных систем, частично для кондиционирования воздуха и полива зеленых насаждений и автодорог. Сброс сточных вод в водоем отсутствует. Продувочные воды оборотных систем и очищенные стоки завода (около 30 тыс. м3/сут) направляются для повторного использования в технологическом процессе Алмалыкского химического завода.

На комбинате «Южуралникель» ликвидирован сброс засоленных сточных вод гидрометаллургических цехов. По старой технологии на охлаждение оборудования расходовали примерно 13,5 тыс. м8/сут воды из р. Урал. По окончании технологического процесса вода, загрязненная значительными количествами сульфатов и хлоридов натрия, а также солями тяжелых цветных металлов, накапливалась в течение года в специальных накопителях и сбрасывалась в Урал весной, в период паводка. Вода, загрязненная солями никеля, сливалась в производственную канализацию.

Специалисты института «Гипроникель» разработали систему оборотного снабжения водой, содержащей соли никеля, и соленакопители-испарители для приема и испарения засоленных вод, включающих хлориды и сульфаты натрия. Эта система состоит из градирни, насосной станции и трубопроводов. Оборотная вода многократно используется для конденсации паров при вакуум-кристаллизации и охлаждения вакуум-насосов. При достижении определенной концентрации никеля она направляется в технологический процесс, а не сбрасывается в производственную канализацию. Водные потери в системе восстанавливаются за счет свежей воды. После введения в эксплуатацию оборотной системы охлаждения воды и пуска первых карт соленакопителя-испарителя на комбинате полностью исключен сброс в р. Урал производственных стоков гидрометаллургических цехов. Одновременно уменьшилось и потребление свежей воды (до 4,6 тыс. м3/сут).

Оборотное и последовательное использование воды на производстве не исключает, однако, полностью сброса отработанных вод. Кардинальным решением проблемы в настоящее время должно стать устройство на промышленных предприятиях бессточных систем водообеспечения. Современный уровень развития науки и техники позволяет в принципе создать их в любой отрасли промышленности.

За последние годы такие системы успешно внедрены на ряде химических, нефтехимических, металлургических, целлюлозно-бумажных предприятий. Один из них — Верх-Исетский металлургический завод им. В. И. Ленина. Бурное развитие завода, рост жилищного строительства привели к тому, что это предприятие оказалось в центре Свердловска и продолжало пользоваться водой из Верх-Исетского пруда — единственного источника водоснабжения всего промышленного узла. Было решено перевести водоснабжение отдельных цехов и объектов завода на оборотное, а в перспективе создать бессточные системы. Нелегко было обеспечить очистку и повторное использование сточных вод цеха холодного проката трансформаторной стали. Для этого на заводской опытно-промышленной базе по очистке сточных вод смонтировали модельные и полупромышленные установки.

Очистные сооружения размещаются в нескольких зданиях. Травильные растворы перерабатываются на кремнекупоросной установке. Остальные стоки пропускаются через комплекс очистных сооружений, в состав которого входят оборудование по очистке сточных вод и обработке осадков, установки сжигания маслоотходов, а также флотационная и выпарная, непрерывно действующие горизонтальные отстойники. Блок очистных сооружений организационно входит в состав цеха водоснабжения и очистки промышленных стоков завода.

Кислые железосодержащие промывные воды травильных отделений очищаются по замкнутой схеме. После очистки вода направляется на повторное использование. Образующиеся при очистке железосодержащие шламы подвергаются дальнейшему окислению (при этом получается магнетит), а затем гипсожелезогидратный шлам обезвоживается на фильтр-прессах. Очистка и повторное использование кислых железосодержащих промывных вод показали работоспособность данной схемы и практическую возможность оборота таких вод.

Промывные воды от агрегатов электроизоляционного покрытия и агрегатов обезуглероживающего отжига, содержащие мелкодисперсную окись магния, осветляются в специальных сгустителях, после чего осветленная вода используется повторно в цехе, а шлам идет для обезвоживания на фильтр-пресс. Осветленная вода для лучшей очистки проходит через кварцевые фильтры и частично (20–30 %) используется повторно для промывки металла после травления, остальная часть подается на выпарную установку. Маслосодержащие стоки предварительно отстаиваются в горизонтальных непрерывно действующих отстойниках, после чего их очищают на флотаторах. Мощность бессточной системы водоснабжения цеха — 400 тыс. м3/сут.

Образующиеся при очистке стоков твердые осадки обезвоживаются на механических фильтрах и утилизируются, а маслосодержащие осадки вместе с отработанными эмульсиями сжигаются. Ежегодно от передачи только обезвоженного осадка на близрасположенныйгипсовый завод экономится 49 тыс. руб. Общий же экономический эффект от эксплуатации бессточной системы водообеспечения составляет 1,35 млн. руб. в год. Эта цифра включает в себя лишь прямые выгоды от эксплуатации системы. Здесь не учтен большой народнохозяйственный эффект от того, что предотвращается загрязнение Верх-Исетского пруда.

Создание бессточной системы водообеспечения на Верх-Исетском заводе — качественно новый шаг в защите природных вод Урала. И это имеет большое значение не только для свердловчан (с каждым годом в городе увеличивается количество воды, потребляемой на хозяйственно-бытовые нужды), но и для многих металлургических и машиностроительных предприятий. Эксплуатация системы наглядно показывает, что в настоящее время существуют все необходимые научные и технические предпосылки для комплексной защиты природных вод, используемых промышленными предприятиями.

На Кармановском нефтеперерабатывающем заводе осуществлена комплексная схема водоснабжения и канализации без сброса сточных вод. Вода из водоема, ранее подававшаяся непосредственно на промысел, теперь используется сначала на нефтеперерабатывающем заводе, а затем в смеси со сточными водами откачивается на промысловые насосные станции законтурного заводнения. Сточные воды предварительно очищаются на сооружениях механической очистки (песколовке, нефтеловушке, в пруде дополнительного отстоя, фильтрах). Преимущества данной схемы налицо: экономится вода, исключается сброс сточных вод в водоем, отсутствует сложная система оборотного водоснабжения и благодаря этому сокращается расход электроэнергии на охлаждение воды и затраты на текущий и капитальный ремонт. Нефтяные промыслы снабжаются водой, подогретой и обогащенной природными минеральными солями, выделенными из нефти в процессе ее обессоливания, что, по опытным данным, увеличивает нефтеотдачу нефтяных скважин. Годовой экономический эффект от внедрения данной схемы составляет 685,7 тыс. руб.

Бессточная система водоснабжения успешно внедрена на Верхнеднепровском горно-металлургическом комбинате. Теперь все производственные сточные воды комбината проходят соответствующую локальную очистку и доочистку в прудах-отстойниках и возвращаются на производство. Ежесуточно в обороте находится 300 тыс. м3 воды. Хозяйственно-бытовые стоки комбината и других предприятий города проходят биологическую очистку и доочистку в прудах-аэраторах и также возвращаются для подпитки систем оборотного водоснабжения.

Интересен опыт Николаевского гидролизно-дрожжевого завода. Биологически очищенные сточные воды предприятия зимой полностью используются в системе оборотного водоснабжения, а летом часть их идет на полив ближайших сельскохозяйственных угодий. Осадки сточных вод из первичных отстойников вместе с частью концентрированных сточных вод перекачиваются на расположенный рядом Ольшанский цементный завод. Это, с одной стороны, удешевляет стоимость очистки и обработки осадков, с другой — повышает качество цемента. Избыточный активный ил из вторичных отстойников применяется в производстве полноценного белково-витаминного кормового продукта. Технология использования отходов сточных вод, разработанная на Николаевском заводе, обеспечивает не только самоокупаемость, но и рентабельность очистных сооружений. Прибыль от экономии свежей воды, орошения сельскохозяйственных земель и от реализации товарного ила превышает стоимость годовой эксплуатации очистных сооружений в 1,7 раза.

Значительно снижает загрязнение водоемов использование очищенных стоков в оборотном водоснабжении промышленных предприятий. С этой целью на Черниговском камвольно-суконном комбинате (КСК) была исследована возможность применения для технического водоснабжения городских сточных вод, прошедших сначала полную биологическую очистку на очистных сооружениях производственного объединения «Химволокно», а затем дополнительную очистку на КСК. При этом биологически очищенные стоки обрабатывались по технологии, применяемой на КСК для подготовки речной воды. Эта технология включает обработку воды сернокислым алюминием с последующим осветлением ее в осветлителях со взвешенным осадком на двухслойных скорых фильтрах; часть воды умягчается на катионитовых фильтрах. Для обеззараживания воды в технологическую схему включено хлорирование (раствором хлорной извести) осветленной воды дозами, обеспечивающими концентрации остаточного хлора не менее 1,5 мг/л.

Результаты исследований показали, что по химическому составу вода, получаемая в результате доочистки стоков, отвечает всем требованиям, предъявляемым к воде, используемой для технического водоснабжения комбината.

Повторное употребление воды только на КСК сокращало забор речной воды (на 10 тыс. м3/сут) и соответственно уменьшало сброс сточных вод в Десну, являющуюся одним из основных источников водоснабжения Киева.

На Первомайском химическом заводе повторно используют 97 % воды. Это достигается за счет дифференцирования сточных вод, локальных методов очистки с последующей доочисткой и утилизацией полученных осадков в виде белково-витаминного концентрата, органо-минеральных удобрений, сульфата натрия. Следует отметить, что доочистка производится с помощью сорбции на активированном антраците и, далее, на ионообменных смолах, после чего вода направляется в основное производство.

Не пропадают зря и регенерационные растворы ионообменных колонн. Они направляются в печи кипящего слоя для получения гранулированных азотных удобрений. Годовой экономический эффект от внедрения системы доочистки составляет, по предварительным расчетам, около 1 млн. руб.

Общеизвестно, что во многих отраслях химической промышленности расходуется громадное количество химикатов, кислот и щелочей. В результате, кроме полезного продукта, образуются и сбросовые растворы сложного солевого состава, очистка которых или повторное использование часто практически невозможны. В настоящее время разработаны методы, позволяющие выпускать основную продукцию химической промышленности без нежелательных компонентов. В основе методов лежат процессы электролиза с ионообменными мембранами и так называемые ионные сита, а также гиперфильтрация с применением осмотических мембран. Мембранная технология позволяет решать различные задачи по разделению жидких и газообразных смесей и разработке безотходных технологических схем. Водооборотные схемы (иногда даже с утилизацией солей) могут быть созданы на базе термического метода опреснения сильно минерализованных сточных вод (в аппаратах с мгновенным вскипанием) и метода бесповерхностной дистилляции (при помощи гидрофобных теплоносителей).

Внедрение безотходной технологии в народное хозяйство — более перспективно и экономично, чем строительство очистных сооружений. Достаточно сказать, что даже большие затраты на строительство очистных сооружений не всегда и не полностью освобождают окружающую среду от вредного воздействия отходов производства. Необходимо искать такие пути развития промышленности и одновременного сохранения чистоты водоемов, которые не исключали бы один другого и не требовали колоссальных расходов на строительство очистных сооружений. Таким кардинальным путем является переход к принципиально новой технологии производства, исключающей отходы, переход к комплексному использованию сырья.

Предприятия, основанные на такой технологии, — это предприятия будущего. Однако уже сейчас строятся и даже действуют целые заводы и фабрики с безотходным производством. В 1976 г. группе советских металлургов за создание промышленного комплекса переработки ванадиевых шлаков на базе новой технологии, обеспечивающей высокую степень извлечения ванадия и исключающей загрязнение воздушной и водной сред, была присуждена Ленинская премия. Этот факт — прямое свидетельство того, что партия и правительство придают большое значение развитию работ в области безотходной технологии.

Предприятие комплексного использования сырья, технология безотходного производства обеспечивают государству двойную выгоду: резкое повышение эффективности капиталовложений и столь же резкое снижение затрат на строительство дорогостоящих очистных сооружений. Ведь комплексная переработка сырья на одном предприятии всегда дешевле, чем получение тех же продуктов на разных. А безотходная технология снимает с повестки дня опасность загрязнения окружающей среды.

Широкое внедрение качественно новой технологии безотходного производства должно стать одной из важнейших задач долгосрочного плана развития народного хозяйства нашей страны. Необходимо добиться такого положения, чтобы в ближайшие 10–20 лет все предприятия, и в первую очередь заводы химической, целлюлозно-бумажной и горно-обогатительной промышленности, работали по технологии комплексной безотходной переработки сырья. Больше того, это условие должно быть обязательным для предприятий, размещаемых в густонаселенных районах страны. Надо признать весьма целесообразным и перевод на безотходную технологию ряда химических, нефтеперегонных и горно-обогатительных заводов, которые действуют в непосредственной близости от городов и сбрасывают свои отходы в реки и водоемы.

Разработка и широкое применение качественно новой технологии, исключающей отходы производства, — актуальная задача современности.

Очистка сточных вод

Одним из существенных мероприятий по охране водоемов является канализация. Под канализацией понимают комплекс санитарных мероприятий и инженерных сооружений, обеспечивающих сбор и быстрое удаление за пределы населенных мест и промышленных предприятий загрязненных сточных вод, их очистку, обезвреживание и обеззараживание. Методы очистки бытовых сточных вод подразделяются на механические и биологические. При механической очистке сточных вод происходит разделение их жидкой и твердой фаз. Для этой цели применяются решетки, песколовки, различные отстойники и т. д. Жидкая часть сточных вод подвергается биологической очистке, которая может быть естественной и искусственной. Естественная биологическая очистка сточных вод осуществляется на полях фильтрации, полях орошения, в биологических прудах и т. п. Для искусственной биологической очистки применяют специальные сооружения — биофильтры, аэротенки. Обработка ила производится на иловых площадках или в метантенках.

Разнообразны сооружения для механической очистки сточных вод. Прежде всего, это — решетки, которые задерживают крупные загрязнения в сточной воде. Песколовки улавливают в ней минеральные примеси. Необходимость предварительной их задержки обусловливается тем, что при раздельном выделении из сточной жидкости минеральных и органических загрязнений облегчаются условия эксплуатации сооружений, служащих для дальнейшей очистки отстойников, метантенков и др. Принцип действия песколовки не сложен: частицы, удельный вес которых больше, чем удельный вес воды, по мере движения вместе с водой в резервуаре выпадают на дно. Отстойники в зависимости от своего назначения подразделяются на первичные и вторичные. Первичные обычно устанавливаются до сооружений биологической обработки сточных вод, вторичные — после этих сооружений. По конструктивным признакам отстойники подразделяются на горизонтальные, вертикальные и радиальные.

Первичные отстойники практически могут обеспечить эффект осветления жидкости не более чем на 60 %, чаще он колеблется в пределах 30–50 %. Эффективность отстаивания можно повысить предварительной аэрацией: продуть сточную жидкость перед отстойниками воздухом в течение 10–20 мин. Если одновременно с аэрацией добавляют избыточный активный ил и биопленку из вторичных отстойников, то этот процесс называется биокоагуляцией.

Разнообразны сооружения для обработки осадка сточных вод. Это — септики, двухъярусные отстойники и осветлители-перегреватели, метантенки, иловые площадки. Септиками называются сооружения, в которых одновременно происходит осветление сточной жидкости и длительное хранение и перегнивание выпавшего осадка. Осадок хранится от 6 до 12 месяцев, затем под влиянием накопившихся в нем анаэробных микроорганизмов разрушается, а нерастворимые органические вещества превращаются в газообразный продукт или в растворимые минеральные соединения. Сточную жидкость осветляют в септиках длительное время (от 1 до 3 суток), но при этом достигается высокий эффект осветления.

Двухъярусные отстойники применяют для небольших и средних очистных станций производительностью до 10 тыс. м3/сут. Осадок, выпавший в иловую камеру, сбраживается под влиянием анаэробных бактерий, которые расщепляют сложные органические вещества (белки, жиры, углеводы) первоначально до кислот жирного ряда, а в дальнейшем и до конечных, более простых продуктов: газов метана, углекислоты и частично сероводорода. Сероводород при щелочном брожении связывается в растворе с железом, образуя сернистое железо, окрашивающее осадок в черный цвет.

Метантенк представляет собой цилиндрический или прямоугольный железобетонный резервуар с коническим днищем, предназначенный для сбраживания осадка. Получающийся в результате брожения газ собирается в газовом колпаке, расположенном в верхней части газонепроницаемого перекрытия, и затем отводится для дальнейшего использования. Чтобы ускорить процессы брожения, в метантенке используют различные приемы, в частности подогрев или его перемешивание. Осадок подогревают обычно до температуры 33° или 55 °C, вводом в метантенк острого пара посредством эжектируемых устройств или водой, разогретой до 60 °C и циркулирующей по змеевикам, уложенным внутри метантенка, а также в наружных теплообменных аппаратах. Сброженный осадок имеет высокую влажность (96–97 %) и для дальнейшего использования его необходимо подсушить. Существуют различные приемы сушки осадка: самый распространенный — сушка на иловых площадках — спланированных участках земли (картах), окруженных со всех сторон земляными валиками. Здесь осадок может быть подсушен в среднем до влажности 75 %, вследствие чего его объем уменьшается в 3–8 раз.

Иловые площадки обычно устраивают на естественном основании с дренажем или без дренажа при условии залегания грунтовых вод на глубине, не меньшей 1,5 м от поверхности карт. Но случается, что и при хороших грунтах не исключается опасность загрязнения грунтовой воды. Тогда площадку устраивают на искусственном основании, препятствующем попаданию профильтровавшейся загрязненной воды в грунтовой поток. Если грунт под иловыми площадками плотный и водонепроницаемый (суглинок, глина), то они сооружаются на естественном основании со специально устроенным трубчатым дренажем, уложенным в канавы, заполненные щебнем.

С целью механизированной уборки, погрузки и транспортирования подсушенного осадка на иловых площадках устраивают дороги для проезда автотранспорта и механизмов, а также съезды на карты.

Земледельческие поля орошения предназначаются для круглосуточного и круглогодичного обезвреживания сточных вод, используемых для полива и удобрения сельскохозяйственных культур. Однако такие поля нельзя создавать на территориях, находящихся в пределах I и II поясов зоны санитарной охраны источников; в непосредственной близости от выклинивания водоносных горизонтов, а также при наличии трещиноватых пород и карстов, не перекрытых водоупорным слоем; в местах со стоянием грунтовых вод на глубине менее 1,25 м от поверхности. При организации полей орошения необходимо предусмотреть устройство резервных полей фильтрации (25–30 % площади орошаемой территории) для приема сточных вод в неблагоприятные периоды года, во время уборки урожая и в других случаях, когда сточные воды не могут быть использованы для полива.

На земледельческих полях орошения можно выращивать технические, зерновые, кормовые и силосные культуры, однолетние и многолетние травы, овощи, употребляемые в пищу после термической обработки (свекла, тыква, кабачки, баклажаны и т. д.), сорта капусты, не применяемые для салата в свежем виде, картофель, плодоягодные и декоративные насаждения и т. п. В то же время запрещается сажать овощные культуры, идущие в пищу без термической обработки (морковь, петрушка, брюква, репа, редис, лук, сельдерей, огурцы, помидоры, салат и др.), а также бахчевые (арбузы, дыни) и ягоды (землянику и клубнику). При сборе урожая с орошаемых участков нельзя складывать овощи на землю. Их следует укладывать или непосредственно в тару, или на специальную подстилку.

Поля фильтрации служат только для очистки жидкой фазы сточных вод. При выборе территории для их расположения руководствуются теми же правилами, что и при подборе места для полей орошения. Наиболее подходящие грунты для полей фильтрации — пески и супеси. Поля фильтрации следует располагать ниже водозаборных сооружений по течению грунтового потока. Расстояние от водозаборных сооружений определяется величиной радиуса депрессионной воронки водозаборной скважины, но должно быть не меньше 200 м для легких суглинков, 300 — для супесей и 500 м — для песка. В отличие от полей орошения на поля фильтрации допускают значительно большую нагрузку, при их оборудовании обязателен дренаж. Процесс окисления органических веществ в почве должен происходить непрерывно. Поэтому при снижении ее фильтрационной способности необходимо перепахать и пробороновать участки.

Биологические фильтры — это сооружения, где происходит искусственный процесс биологической очистки сточных вод. Биофильтр состоит из следующих основных частей: емкостей соответствующих размеров, устроенных из кирпича или железобетона; фильтрующей загрузки; распределительного устройства, обеспечивающего равномерное (с небольшими интервалами) орошение поверхности фильтрующей загрузки; днища с дренажем, посредством которого отводится очищенная вода и поступает в сооружение необходимый для окислительного процесса воздух. Материал фильтрующей загрузки должен быть достаточно пористым, так как это способствует хорошей вентиляции фильтра, но вместе с тем прочным и стойким к механическим и химическим воздействиям. Этим требованиям удовлетворяют котельный шлак, определенные сорта угля, кокс, гравий, щебень твердых пород и хорошо обожженный керамзит.

Проходя через фильтрующую загрузку биофильтра, загрязненная вода оставляет в ней вследствие адсорбции взвешенные и коллоидные органические вещества (не осевшие в первичных отстойниках), которые создают биопленку, густо заселенную микроорганизмами. Они окисляют органические вещества и получают необходимую для своей жизнедеятельности энергию. Часть растворенных органических веществ микроорганизмы используют как пластический материал для увеличения своей массы. Таким образом, из сточной воды удаляются органические вещества, а в теле биофильтра увеличивается масса активной биологической пленки. Отработанная и омертвевшая пленка смывается протекающей сточной водой и выносится из тела биофильтра.

Схема работы биофильтра проста. Осветленная в первичных отстойниках сточная вода самотеком (или под напором) поступает в распределительные устройства, которые периодически напускают ее на поверхность биофильтра. Профильтрованная сквозь толщу биофильтра вода проходит через отверстия в дырчатом дне (дренаж) и поступает на сплошное непроницаемое днище, с которого стекает по отведенным лоткам, расположенным за пределами биофильтра.

Затем она поступает во вторичные отстойники, которые задерживают выносимую пленку и отделяют ее от очищенной сточной воды.

Биофильтр отличается от аэрофильтра тем, что последний интенсивно продувается снизу вверх воздухом. Поэтому процесс окисления в аэрофильтрах проходит значительно интенсивней, чем в обычных биофильтрах (приблизительно в 2 раза), и, следовательно, количество очищаемой сточной жидкости в данном случае может быть значительно выше.

Аэротенк представляет собой резервуар, в котором медленно движется смесь активного ила и очищаемой сточной жидкости. Для их лучшего и непрерывного контакта они постоянно перемешиваются при помощи сжатого воздуха или специальных приспособлений. Нормальной жизнедеятельности микроорганизмов-минерализаторов в аэротенке способствует непрерывное поступление туда кислорода воздуха.

Активный ил — это биценоз микроорганизмов-минерализаторов, способных сорбировать на своей поверхности и окислять в присутствии кислорода воздуха органические вещества сточной жидкости. Смесь сточной жидкости с активным илом должна аэрироваться на всем протяжении аэротенка. Это необходимо не только для того, чтобы обеспечить микроорганизмы-минерализаторы достаточным количеством кислорода воздуха, но и для поддержания ила во взвешенном состоянии. Кислород нагнетается в аэротенк с воздухом воздуходувками или засасывается из атмосферы при сильном перемешивании содержимого аэротенка.

Биологическая пленка или активный ил задерживаются вторичными отстойниками. Последние используются и как контактные резервуары, перед которыми в сточную воду подают хлорный раствор. Вторичные отстойники, составляющие с аэротенками технологически связанные сооружения, служат только для отделения активного ила от очищенной в аэротенке сточной воды.

Биологические пруды применяют как самостоятельные биологические очистные устройства или в качестве сооружений для конечной стадии очистки сточных вод, предварительно обработанных на биологических сооружениях (биофильтрах, аэротенках). В первом случае сточные воды, пройдя отстойники, разбавляются до поступления в пруды 3–5 объемами технической или хозяйственно-питьевой воды.

Средняя глубина в биологических прудах должна (в зависимости от местных условий) не превышать 1 м, но и не быть менее 0,5 м. Весной, перед пуском биологических прудов в эксплуатацию, производят вспашку их дна. После вспашки пруды заполняют сточной водой и выдерживают почти до полного исчезновения из нее аммонийного азота. Срок «созревания» прудов для средней полосы СССР не менее одного месяца. Осенью, после окончания работы биологических прудов, воду из них спускают. В зимнее время в биологических прудах намораживают воду.

Сточные воды любого населенного пункта содержат патогенные микробы. В связи с этим обеззараживание сточных вод необходимо во всех случаях применения искусственной очистки. В настоящее время обеззараживают жидким хлором (доза активного хлора после механической очистки — не менее 30 мг/л, неполной биологической — 15 мг/л, полной искусственной биологической очистки — 10 мг/л). На небольших очистных сооружениях производительностью до 1 тыс. м3/сут допускается использование хлорной извести, на крупных сооружениях применяется жидкий хлор и процесс хлорирования автоматизирован.

Хлорирование сточной жидкости производится в специальных контактных резервуарах, устраиваемых по типу горизонтальных или вертикальных отстойников. Продолжительность контакта хлора с жидкостью — не менее 30 мин, поэтому если очищенная вода проходит от станции очистки до водоема в течение 30 мин или более, то такие резервуары не нужны. Если в сточной жидкости содержится не менее 1,5 мг/л остаточного активного хлора, то она может считаться обеззараженной.

Сточные воды промышленных предприятий, в отличие от хозяйственно-бытовых, характеризуются высоким содержанием растворенных веществ, которые указанными выше способами не извлекаются. Для их удаления применяют самые различные методы очистки. Выбор метода зависит от того, в каком состоянии обнаружено вещество в сточной воде — в молекулярном или в диссоциированном на ионы. Так, для веществ, которые находятся в воде в молекулярно-растворенном состоянии, рекомендуют сорбцию с помощью различных сорбентов, десорбцию аэрацией, обработку воды окислителями (для органических веществ) и др. В случае диссоциации вещества на ионы методы очистки сточных вод направлены на образование малорастворимых соединений (карбонатов, сульфатов и пр.), перевод токсичного иона в малотоксичный комплекс (перевод цианидов в ферроцианиды), создание малодиссоциированных молекул при взаимодействий водородных и гидроксильных ионов, извлечение из воды ионов при электродиализе, замену токсичных ионов безвредными при Н+- и ОН-ионировании и многое другое.

В настоящее время сточные воды часто доочищают для повторного использования в производственном водоснабжении. Такая их доочистка вызвана тем, что в ряде случаев в воде наблюдается повышенное солесодержание, биологически неокисляемые органические вещества, канцерогенные соединения и др. Метод доочистки стоков выбирают в зависимости от конкретных остаточных загрязнений воды. Так, для очистки сильноминерализованных стоков с успехом применяется метод термического опреснения, при котором дистиллят, полученный из стоков, используется как обессоленная вода.

В случае органически загрязненных стоков практикуется адсорбционная доочистка в псевдосжиженном или неподвижном слое активированного угля, а для корректировки минерального состава — умягчение на ионообменных фильтрах. Адсорбционно доочищенная и умягченная вода — важный источник пополнения водооборотных систем. В такой воде отсутствуют взвешенные, органические, поверхностно-активные и другие загрязняющие вещества, а ее качество выше, чем у охлажденной воды. К тому же умягченная вода не требует продувки водооборотных систем. Повторное использование доочищенных стоков резко сокращает потребление свежей воды из источников (в 20–25 раз).

Производственные сточные воды, содержащие токсические органические и минеральные вещества, все чаще обезвреживаются с помощью огневого метода. Под влиянием высокой температуры в процессе горения органического топлива токсичные органические вещества окисляются и полностью сгорают, а минеральные — частично выводятся в виде расплава, частично выносятся с дымовыми газами в виде мелкой пыли и паров. Наиболее универсальны и эффективны циклонные печи (реакторы). Они являются основными агрегатами комплексных установок огневого обеззараживания жидких отходов. Каждая такая установка включает в себя циклонный реактор с гарнисажной охлаждаемой футеровкой, стол-кристаллизатор, скруббер-охладитель, скоростной газопромыватель типа Вентури с каплеотбойниками, емкостный парк с насосной и дымовую трубу.

Охрана малых рек

Трудно переоценить хозяйственную, климатическую и целебную роль малых рек. Они поят города и села, дают воду предприятиям и полям. На их берегах мы получаем заряд бодрости и здоровья. Реки служат украшением ландшафтов. Малые реки с их живописными берегами, заросшими деревьями и кустарниками, — жемчужины природы. Но они не только украшают Землю, они неутомимо трудятся.

Учитывая значение для народного хозяйства водных ресурсов малых рек, Министерство мелиорации и водного хозяйства РСФСР в 1975 г. признало необходимым провести их паспортизацию, в первую очередь в наиболее дефицитных по водным ресурсам бассейнах Дона, Урала и Оки. Во время паспортизации детально обследуется каждый водоток, учитывается количество озер, прудов, капитальных плотин, сброс отработанных вод, зарегулированность речной сети и ее фактическая водность, дается характеристика воды, очерчивается круг мер по охране водотоков. Из данных, полученных по каждому водотоку, создается картина всего водоема. В дальнейшем подобные сведения войдут в Государственный водный кадастр, но главное, все они позволят эффективно контролировать использование водных ресурсов.

В 1976 г. началась паспортизация малых рек Рязанской области. Она закончилась в 1979 г., охватив 226 водотоков общей протяженностью 6788 км. Три паспорта получила р. Проня, общей протяженностью 336 км. У этой реки — около 400 притоков, причем у каждого из них есть еще и свои голубые ручейки. Журчат они не только в Рязанской, но и в Московской, Тульской, Липецкой областях.

Вот и пришлось «выдать» столь обширному бассейну реки составной паспорт.

«Паспортисты» насчитали в бассейне Прони 33 пруда с капитальными плотинами, 730 прудов временных, два крупных водохранилища, обнаружили 659 скважин, берущие из-под земли 185 тыс. м3/сут воды.

Рекомендации были четкими: для орошения использовать местный зарегулированный сток, с целью уменьшения эрозии активизировать строительство прудов, продолжить работы по укреплению берегов. Эти предложения сыграли большую роль при разработке плана комплексного использования и охраны водных ресурсов области. В частности, было решено в течение 1978–1980 гг. построить на малых реках 68 плотин. В их числе плотина на р. Мостье, под с. Покровским. В настоящее время на малых реках в Михайловском, Касимовском и некоторых других районах уже построено несколько плотин.

Закончена паспортизация малых рек в Тульской области. Эту сложную комплексную работу, проведенную впервые в Нечерноземной зоне РСФСР, выполнили сотрудники Казанского отдела Северного НИИ гидротехники и мелиорации.

Тульскую землю пересекают 1682 реки и ручья. Если вытянуть их в одну «нитку» и затем измерить ее, то получится почти 11 тыс. км. За последние годы в области значительно увеличилось потребление воды — растет промышленное производство, расширяются и благоустраиваются города и села, развивается орошаемое земледелие. В ближайшем будущем забор воды возрастет еще заметнее.

Специалисты тщательно исследовали территории, по которым протекают реки и ручьи. Они подробно охарактеризовали реки длиной от 10 до 200 и более километров, в том числе такие, как Упа и Красивая Меча, Плава, Осетр и др. Анализ собранных материалов помог определить водные ресурсы области, перспективы их хозяйственного использования.

Паспорта содержат подробнейшие сведения о речных бассейнах Тульской области, их возможностях. На основе этих документов будут организованы охрана вод, бережное расходование их ресурсов.

Забота о малых реках приобретает в области целеустремленный характер. В Туле, Алексине, Ефремове, Плавске, Северо-Задонске, Болохове расширяются очистные сооружения, Такие же системы намечено создать в Одоеве, Заокском, Теплом и других населенных пунктах. Строже становится контроль за промышленными сбросами. На полях закладывают защитные лесополосы, овраги закрепляют деревьями и кустарниками: меньше смывается почва — глубже становятся реки. Колхозы и совхозы Тульской области возводят на речках и ручьях 22 пруда, которые позволят орошать сенокосы и долголетние культурные пастбища.

В верхнем течении Упы закончилось строительство водохранилища. Его «зеркало» равно 27 км2. Водохранилище обеспечило водой Тульский и Щекинский промышленные узлы, ее получили и жители Тулы и других городов. Проектируемое на Красивой Мече (недалеко от Ефремова) водохранилище даст живительную влагу расположенным в округе садам и лугам.

Чтобы сохранить малые реки, нужно правильно использовать их водные ресурсы. Нельзя мириться с таким положением, когда руководители отдельных хозяйств, расположенных в верховьях реки, без обязательного научно обоснованного проекта перегораживают ее плотиной и используют воду, нисколько не заботясь об интересах потребителей, живущих ниже плотины. Подобная безответственность зачастую приводит еще и к тому, что пересыхают русла, заметно понижается уровень грунтовых вод.

В связи с интенсификацией сельскохозяйственного производства и все растущим применением химических удобрений и ядохимикатов следует опасаться возможности проникновения их в водоемы с атмосферными осадками. Вероятность такого попадания намного усиливается, если берега лишены растительности, а пахотные земли часто распахиваются чуть ли не до самого берега реки. Поэтому необходимо установить вдоль берегов водоохранные зоны, внутри которых не разрешается вырубка или корчевка кустарника.

Многие мелкие реки являются нерестилищами для рыбы. Поэтому их надо особенно беречь. Охранять рыбное поголовье наших водоемов — непреложный закон для каждого из нас. В этом отношении заслуживает внимания опыт Московской области.

Ежегодно с 10 апреля по 10 июня объявляется двухмесячник по охране рыбных запасов в водоемах области. Все организации, использующие водоемы, обязаны в это время развернуть широкую разъяснительную работу среди населения о необходимости такой охраны и пресечения браконьерства. В период двухмесячника запрещено применение моторных лодок на Можайском, Рузском, Озернинском, Истринском водохранилищах и на озерах, где введено платное рыболовство, за исключением флота спецслужб и обществ, выделенного для рыбоохранной работы. Службы водохранилищ призваны обеспечить стабильный уровень воды в водохранилищах в период нереста рыбы, инкубации икры и выклева личинок. Особое внимание уделяется мерам, исключающим попадание в водоемы и береговые санитарные зоны различных ядохимикатов, применяемых на обработке полей, минеральных удобрений, навоза и других ядовитых для рыб и водных организмов веществ. Любительский лов рыбы в период двухмесячника разрешается только на одну поплавочную удочку с двумя крючками или двумя удочками по одному крючку на каждой, причем только в местах, где нет нереста рыбы.

Забота о полноводной жизни малых рек — одна из прямых обязанностей местных Советов. Большую помощь им во всех мероприятиях, направленных на защиту и оздоровление водной среды, должны оказывать общественные организации и ведомства, использующие ту или иную реку. Необходимо не только хорошо знать каждый уголок своего района, но и уметь сохранять его природную первозданность. А главное, нужно просто беречь воду — вместилище рыбных богатств, союзника отменных урожаев, необходимого спутника тысяч производственных процессов, — воду, без которой не может быть жизни.

Управление использованием и охраной вод суши

Государственное управление в области использования и охраны вод в нашей стране осуществляется высшими исполнительными органами власти — Советом Министров СССР, советами министров союзных и автономных республик, исполкомами местных Советов народных депутатов, а также специально уполномоченными на то государственными органами.

В июне 1979 г. Совет Министров СССР утвердил Положение о государственном контроле за использованием и охраной вод. Задача контроля — обеспечить соблюдение всеми министерствами, ведомствами, предприятиями, учреждениями, организациями и гражданами установленного порядка пользования водами, выполнение обязанностей по охране вод от загрязнения, засорения и истощения, по предупреждению и ликвидации их вредного воздействия, а также соблюдение правил учета использования вод и других правил, установленных водным законодательством СССР и союзных республик.

Такой контроль проводится Советами народных депутатов, их исполнительными и распорядительными органами, а также Министерством мелиорации и водного хозяйства СССР, Государственным комитетом СССР по гидрометеорологии и контролю природной среды, Министерством геологии СССР, Министерством здравоохранения СССР, Министерством рыбного хозяйства СССР, Министерством сельского хозяйства СССР, Комитетом по надзору за безопасным ведением работ в промышленности и горному надзору при Совете Министров СССР и администрацией Северного Морского пути при Министерстве морского флота в соответствии с их компетенцией.

В системе Министерства мелиорации и водного хозяйства СССР функции контроля осуществляются Главным управлением по охране вод и Главным управлением комплексного использования водных ресурсов этого министерства, соответствующими главными управлениями, управлениями министерств мелиорации и водного хозяйства союзных республик, бассейновыми (территориальными) управлениями (инспекциями) и другими хозяйственными контрольными органами. Заместитель министра мелиорации и водного хозяйства СССР, ведающий вопросами использования и охраны вод, является по должности одновременно главным государственным инспектором по регулированию использования и охране вод СССР.

В Положении определены функции органов, на которые возложен указанный контроль, а также права и обязанности государственного инспектора по осуществлению этих функций.

В системе Министерства мелиорации и водного хозяйства СССР работает 132 бассейновых, территориальных управлений или инспекций по регулированию использования и охране вод и 252 гидрохимических лаборатории. Последние отбирают и анализируют пробы сточных вод и вод открытых водоемов в местах сброса в них стоков, определяют эффективность работы действующих водоохранных сооружений, намечают мероприятия по устранению вскрытых недостатков и устанавливают сроки их исполнения.

На многих предприятиях страны сейчас действуют санитарные лаборатории, изучающие состав стоков и качество водоемов. Каждая из них проводит в год десятки тысяч анализов. Санитарная лаборатория и ее филиалы на очистных сооружениях работают по единому плану, утвержденному дирекцией предприятия после детального согласования с санитарно-эпидемической станцией.

Органы Государственного комитета СССР по гидрометеорологии и контролю природной среды изучают химический состав поверхностных вод и его изменения под влиянием хозяйственной деятельности человека, а также на основе обобщения полученных материалов составляют обзоры состояния загрязнения водных источников. Для проведения этих наблюдений служба располагает стационарными постами, которые размещены в водных бассейнах страны с учетом распределения сбросов промышленных, коммунальных и сельскохозяйственных стоков и плотности населения. Периодически проводятся экспедиционные обследования различных районов и отдельных водных объектов, имеющих наиболее важное значение для народного хозяйства.

Санитарно-эпидемиологическая служба Министерства здравоохранения СССР отвечают за аспект охраны водоемов, затрагивающий интересы здравоохранения и санитарные условия жизни населения. Санитарное состояние водоемов, имеющих рыбохозяйственное значение, и выполнение мероприятий по их охране контролируют органы рыбоохраны Министерства рыбного хозяйства. Контроль за использованием и охраной, а также изучение состояния подземных вод проводит Министерство геологии СССР.

Объектами санитарных наблюдений, осуществляемых органами санитарно-эпидемиологической службы, являются водоемы, которые используются для хозяйственно-питьевых и культурно-бытовых нужд населения. При этом комплекс аналитических показателей определяется действующим ГОСТом «Источники централизованного хозяйственно-питьевого водоснабжения. Правила выбора и оценка качества», «Правилами охраны поверхностных вод от загрязнения сточными водами». В соответствии с указанными документами при изучении санитарного состояния водоемов в анализ включаются показатели, характеризующие внешний вид водоема, органолептические свойства воды, санитарный режим водоема, содержание вредных специфических веществ в водоеме, микробное загрязнение воды. Материалы о качестве воды водоемов увязываются с данными об их гидрологическом режиме, что позволяет оценить полученные результаты санитарно-лабораторных исследований и использовать их при прогнозировании качества воды водоемов.

В последнее время ведутся большие работы в области автоматизации средств контроля качества воды и совершенствования способов его регулирования. Контроль, осуществляемый с помощью автоматических приборов, способствует более быстрому принятию решений и проведению мероприятий по устранению неблагоприятных воздействий на источники водоснабжения населения. Автоматизация контроля качества воды проводится по двум следующим направлениям: прямое измерение величин концентрации загрязнений с помощью определенных датчиков (в виде электрического сигнала) и автоматизация уже известных процессов анализа воды.

В нашей стране созданы и успешно действуют многочисленные приборы автоматизированного контроля качества воды для стационарных и передвижных лабораторий, а также для работы в полевых условиях. Переносные приборы предназначены в основном для получения экспресс-информации о состоянии отдельных участков водоема, в полевых условиях, с борта лодки, берега и береговых сооружений. Полученные данные позволяют быстро принять нужные решения по устранению неблагоприятных воздействий на контролируемый водоем.

Приборы автоматического контроля качества воды широко применяются в автоматизированных системах управления водоохранных комплексов (АСУ ВК), разработанных за последние годы в нашей стране и за рубежом.

В зарубежных странах автоматические станции именуются мониторами. В состав мониторов входит аппаратура для автоматического отбора проб воды (насосная система), для измерения тех или иных показателей (блок датчиков), для обработки получаемой информации (преобразовательная часть системы для передачи информации). Такие системы станций действуют на некоторых водоемах США, Англии, ФРГ, Японии, Польши, Венгрии, ГДР, Чехословакии и других стран.

В СССР создана автоматизированная система управления водоохранным комплексом АСУ ВК на участке р. Северский Донец (от г. Славянска до пос. Светличного). Отличительной особенностью этой системы по сравнению с имеющимися за рубежом является введение в нее звеньев контроля параметров стока и устройств регулирования качества речной воды. Цель работы системы — обеспечение соблюдения санитарных норм на качество воды в створах крупных водопользователей. Система включает: 8 станций контроля речной воды (КР), 6 станций контроля сточных вод (КС), 5 местных диспетчерских пунктов (МДП) и центральный диспетчерский пункт (ЦДП). Предусматривается регулирование расходов сточных вод из 3 накопителей и режима эксплуатации водохранилища.

Станции контроля речной воды предназначены для автоматического отбора проб, их хранения в течение суток и текущего измерения показателей качества воды. Поскольку система, кроме целей управления, служит и для автоматизации сбора и обработки информации по данным, контролируемым в настоящее время, состав измеряемых показателей широк. Каждые 30 мин. автоматически предполагается определятьуровень и температуру воды, ее электропроводность, pH, еН, мутность, O2, содержание меди, железа, аммиака, фенола и фосфатов. Будут измеряться лабораторными методами и вводиться в систему с пультов ручного ввода информации данные о сухом остатке, БПК5, хлоридах, фосфоре, сульфатах, нитритах, нитратах, бактериологических показателях, ароматических амино- и нитросоединениях, никеле, запахе и цветности. КР оборудованы устройствами для автоматической передачи данных на ЦДП с помощью систем телемеханики.

На всех станциях предусмотрена установка автоматических пробоотборников для непрерывного отбора проб контролируемой воды, хранения их в течение некоторого времени (до 24 час.) и последующего слива. Это дает возможность в любое время иметь набор проб за прошедшие сутки, что необходимо для периодической проверки работы станции, при аварийных ситуациях и т. п. КС оборудованы средствами телемеханики для передачи информации, приема команд с диспетчерских пунктов.

Местные диспетчерские пункты осуществляют сбор информации со связанных с ним КС и ретрансляцию этой информации на центральный диспетчерский пункт (ЦДП).

От ЦДП на МДП по телетайпу передаются сведения о состоянии речной воды на ближайших КР и команды регулирования режима опорожнения накопителей. МДП отвечают за состояние очистных сооружений и сброс сточных вод. Они располагаются на территории промышленных предприятий и обслуживаются их персоналом.

Центральный диспетчерский пункт собирает информацию путем опроса КР, КС и МДП. Кроме того, он может получать ее также от лаборатории Госводинспекции, Государственного комитета по гидрометеорологии и контролю природной среды и санитарно-эпидемиологических станций. Вся информация (после проверки ее достоверности) обрабатывается с целью оценки качества воды водного объекта и уточнения моделей. Полученные данные используются для прогнозирования и принятия решений об изменении регулирующих воздействий. ЦДП обеспечивает выполнение общей задачи функционирования системы и управления работой всех звеньев системы.

Таким образом, в нашей стране и за рубежом достаточно широко осуществляется разработка автоматических приборов контроля качества воды. Их применение позволяет быстро получать большое количество информации о качественном состоянии поверхностных и сточных вод. Наибольшее значение приобретает использование автоматических приборов в автоматизированных системах управления качеством водоемов.

Мировой океан и жизнь на Земле

Теперь мы уже знаем, как выглядит наша Земля из космоса, — это необыкновенно красивая голубая планета. Своей впечатляющей окраской она обязана Мировому океану, который покрывает 71 % ее поверхности. Мировой океан — могущественный фактор жизни на Земле. Он очищает воздух, освежает его влажными ветрами. Здесь когда-то родилась жизнь, а теперь он снабжает нас ценнейшими продуктами.

Без океанов и жизнь на суше была бы совершенно иной. Морские растения, в частности фитопланктон, высвобождающие путем фотосинтеза кислород, играют важную роль для очищения воздуха на нашей планете. Способность воды накапливать тепло в значительной степени влияет на погоду и климат Земли. В морской пищевой цепи происходит своеобразный кругооборот земной флоры и фауны: растительный планктон, как первичный продукт морской жизни, поедается «вегетарианцами» океана — зоопланктоном и моллюсками, которые, в свою очередь, идут в пищу мелким плотоядным, например хамсе или камбале, а те становятся добычей более крупных морских хищников. Остатки растительной или животной пищи путем минерализации снова в виде органического вещества возвращаются в цепь, благодаря действию бактеропланктона.

Море создает множество факторов, благоприятно действующих на организм. Большое значение имеет морской воздух, который имеет равномерную температуру, содержит большое количество кислорода, обогащен такими важными для организма минеральными солями, как кальций, натрий, йод, хлор и др. Благодаря такому составу морской воздух вызывает улучшение деятельности сердечно-сосудистой, нервной систем и дыхания организма.

Морская вода содержит соли натрия, магния, железа, йода, хлора, брома и др., в том числе и поваренную соль.

Мировой океан — главная база рыболовства. Морские просторы используются для перевозки больших грузов и пассажиров. С морского дна уже добываются разнообразные полезные ископаемые (железо, марганец, золото, алмазы, титан, хром и др.), осуществляется около 20 % (в мировом масштабе) добычи нефти и газа — для многих стран Западной Европы морские месторождения являются основными источниками нефти.

Широкий размах хозяйственного использования морей человеком сопровождается их загрязнением. Моря и океаны до недавнего времени (20–30 лет назад) воспринимались как неограниченные просторы, в которые можно выпускать сколько угодно отходов и отбросов. Считалось, что в морской воде сбросы подвергаются биологическому распаду и превращениям. За этот короткий период в Мировой океан успели внести значительные количества радиоактивных отходов и другие загрязнения.

Известно, что все сбросы в реки, озера и другие водные объекты, находящиеся на территории крупных промышленных центров и сельскохозяйственных районов, в конечном итоге достигают моря. С водами рек в моря и океаны попадает 320 млн. т железа, 6,5 млн. т фосфора, 2,3 млн. т свинца, 1,6 млн. т марганца, а также большое количество жиров, поверхностно-активных веществ, кислот, ядохимикатов, радиоактивных соединений, от 3 до 10 млн. т нефти и других веществ. По расчетам известного океанолога-геохимика Б. А. Скопинцева, реки приносят в моря и океаны около 700 млн. т органических веществ в год. В моря смываются больше всего те загрязнения, которые обладают свойством длительно сохранять свое токсическое действие.

Значительные загрязнения в моря вносят различные разработки полезных ископаемых (нефти и других), а также морской транспорт.

Ресурсы Мирового океана

Ученые и экономисты едины во мнении, что Мировой океан таит в себе в огромных количествах продукты питания, сырье и энергию. Из 160 тыс. видов растений и животных, обитающих в Мировом океане, мы используем только 1,5 тыс. И хотя за последние 30 лет мировой вылов морепродуктов перевалил за 70 млн. т, ученые полагают, что можно без ощутимых потерь для океанского «населения» вылавливать еще дополнительно около 30 млн. т. Впрочем, уже сейчас возникают опасения о допустимости ловли некоторых ценных видов рыб и китов. Происходит это, в частности, потому, что в ряде капиталистических государств рыбная ловля велась без учета научных рекомендаций. Кроме того, издавна рыбу ловят всего лишь на 25 % акватории Мирового океана, расположенных преимущественно в прибрежной зоне. Подсчитано, что на шельфе с глубин до 200 м вылавливается 90 % всего мирового улова морепродуктов. Около 75 % океанской поверхности вообще не охвачено рыболовством.

Советские ученые, исследуя различные районы Мирового океана, установили перспективность лова и на больших глубинах. В частности, такие глубоководные рыбы, как макрурус, сабля-рыба, хек, путассу, и ряд других уже стали объектами промышленного лова советских рыбаков. Отметим, наконец, такой факт: во время одной экспедиции на «Витязе» была поймана рыба с глубины 7,5 тыс. м.

Весьма перспективной выглядит также идея активного воздействия на океанскую фауну, в частности искусственное разведение рыб, переселение их из одних водоемов в другие, увеличение кормовой базы и т. д. Определенных успехов в этом отношении добились советские ученые (разведение кефали, червя нереис и моллюска синдесмия — на Каспии, акклиматизация камчатского краба — в Баренцевом море и т. д.).

Добычу можно увеличить, например, за счет регулируемого разведения рыбы и моллюсков в огороженных морских акваториях или подводных клетках. Подобное рыбоводное фермерство является «многообещающей альтернативой морскому рыболовству». Во всяком случае, уже сейчас в мире подобным способом получают 6 млн. т рыбы, раков и моллюсков. Японцы, например, ежегодно производят таким образом около 80 тыс. т лосося, омаров и скумбрии. По оценкам Продовольственной и сельскохозяйственной организации ООН (ФАО), это количество можно увеличить до 30 млн. т.

Мировой океан, занимая 70 % поверхности планеты, дает человечеству всего лишь 1,5 % пищевых ресурсов. Одна из причин: в море человек пока но стал рачительным хозяином. Он шел там по более простому пути охотника, хотя на суше давно уже перешел к земледелию и скотоводству — высокоразвитое сельское хозяйство дает ему более 98 % всей потребляемой пищевой продукции. Морское «сельское хозяйство» до сих пор но получило широкого распространения. Правда, во второй половине XX в. в ряде стран, имеющих прямой выход к морю, марикультурой занялись основательно. Там она сейчас быстро развивается.

Число «освоенных» морских организмов уже превысило две сотни видов. Среди них такие характерные для морей нашей страны рыбы, как лососи (их разводят в морских садках), палтус, угорь, кефаль, терпуг. Перспективны и моллюски, мясо которых пользуется большим спросом: оно высокопитательно, обладает и лечебными свойствами. Разработана технология выращивания гребешка, устриц, мидий, креветок, омаров, начаты работы по культивированию «морского женьшеня» — трепанга. Наряду с животными на подводных плантациях выращивают ламинарию — «морскую капусту», а также водоросли-агароносы, из которых извлекают ценное технологическое сырье — агар-агар.

Перспективный район для марикультуры — прибрежные воды советского Дальнего Востока. По подсчетам специалистов Тихоокеанского научно-исследовательского института рыбного хозяйства и океанографии (ТИНРО), в заливах Японского моря можно, например, получать с 1 га до 100 т ламинарии и 40–50 т устриц. Но марикультура на Дальнем Востоке делает лишь первые шаги. В Приморье выращивают в опытно-промышленных масштабах моллюсков, в промышленных — морскую капусту.

В заливе Посьета действует морская экспериментальная база Дальтехрыбпрома. Это единственное в СССР предприятие, где в естественных условиях выращивают гребешок и гигантскую устрицу. В 1977 г. здесь собрали хороший урожай. Несколько лет успешно действуют три водорослевых фермы — в бухтах Валентин, Каменка и Анна.

Урожайность ламинарии достигает 50–60 т с 1 га прибрежной акватории, общая площадь которой составляет 30 га.

С каждым годом на Земле возрастает потребление воды. По оценкам специалистов, в 2000 г. ее потребуется в 8 раз больше, чем сейчас. Но, поскольку запасы пресной воды в мире ограничены, она может быть получена только из морей.

Мировой океан — неисчерпаемый водный резервуар. Однако 3,5 % соли, содержащейся в морской воде, мешают ее использованию в сельском хозяйстве, в промышленности и для питья без предварительного опреснения. До 1960 г. строились лишь небольшие опреснительные установки мощностью максимум в 3 тыс. м3/сут пресной воды. Однако с тех пор размеры и число ежегодно строящихся опреснительных установок заметно выросли. Только в 1975 г. введены в строй 26 установок, производящих в среднем по 9,304 тыс. м3/сут воды. В 1977 г. одна такая установка вырабатывала уже 14 тыс. м3/сут воды.

В настоящее время наблюдается тенденция к дальнейшему росту мощностей и количества морских опреснительных установок. Этому во многом способствовало то обстоятельство, что в засушливых районах Земли и в пустынях имеются большие месторождения нефти и газа. Чтобы добывать их нужны люди, а людям нужна вода. В местах добычи этого сырья возникли новые поселения, быстро увеличивалось население. Например, если в 1968 г. Абу-Даби, столица одноименного нефтяного эмирата в Персидском заливе, насчитывала 22 тыс. жителей, то в 1975 г. их число увеличилось до 130 тыс., а к 1985 г., согласно заключению некоторых специалистов, достигнет 430 тыс. человек. Обретенное богатство породило в таких странах желание обеспечить свое будущее путем создания собственной промышленности. Для этого, однако, понадобилось много пресной воды.

Практически неограниченное количество пресной воды, полученной из морской, можно дать сельскому хозяйству. Однако масштабы использования морской воды для сельского хозяйства зависят от цены пресной: чем дешевле процесс опреснения, тем больше воды для орошения. К сожалению, производство 1 тыс. л воды на современных опреснительных установках обходится приблизительно в 5 раз дороже, чем на станциях водоснабжения.

Морская вода — это нечто вроде жидкой руды. В ней содержатся элементы почти всей таблицы Менделеева.

Ученые подсчитали, что в морской воде растворено 6,5 млрд. т натрия, 80 млрд. т никеля, 800 млн. т молибдена, около 10 млрд. т золота — примерно по 3 т на каждого жителя Земли.

Если распределить по всей суше соль, имеющуюся в морской воде, то получится слой толщиной 153 м. Больше того, в 1 км3 воды содержится 700 тыс. т калийной соли, идущей на удобрения и для отбеливания тканей, причем добывать ее в море гораздо эффективнее, чем на суше. Море богато и сульфатом натрия — ценнейшим сырьем для стекольной, целлюлозно-бумажной и текстильной промышленности. Особенно много его в водах знаменитого залива Кара-Богаз-Гол. В воде Мирового океана хранится 90 млрд. т йода; брома — в восемь раз больше, чем в равном объеме земной коры. Все мировое производство брама основано на океанских промыслах.

Морское происхождение имеет пятая часть производства тяжелой воды. В морях и океанах имеется до 200 млн. т лития — этого источника энергии XXI в., а 1 т морской воды содержит 3,3 мг урана.

В Японии, как известно, нет природного урана и его приходится импортировать из-за границы. Это обстоятельство серьезно тормозит интенсивно развивающуюся в стране атомную энергетику. Однако эта проблема, кажется, находит решение. К 1985 г. в Японии намечено завершить строительство экспериментальной опытной установки по извлечению урана из морской воды. Технология, разработанная на основе опыта эксплуатации этой установки, найдет применение на трех заводах общей производительностью 3 тыс. т урана в год. Такого количества урана достаточно для снабжения топливом 12 атомных электростанций мощностью по 1 тыс. МВт каждая.

Истощение запасов полезных ископаемых на суше заставляет многие страны проявлять все больший интерес к поиску и добыче различных минералов со дна моря. Немногим более ста лет началась история подводных полиметаллических руд. 7 марта 1873 г. трал английского фрегата «Челленджер», совершившего трехлетнее кругосветное плавание с целью исследования глубоководных впадин, поднял с глубины 4 тыс. м нечто вроде черноватой гальки. Химики быстро установили, что эти любопытные образования состоят почти исключительно из окиси марганца и представляют собой «марганцевые конкреции». В наш век интерес к этим конкрециям значительно возрос — ведь, кроме марганца, концентрация которого наиболее высока (в среднем около 25 %), они содержат большое число других металлов, в том числе медь, никель, кобальт, молибден. Конкреции обычно залегают в осадочных отложениях, так называемом радиоляриевом иле (радиолярии — планктонные животные организмы), на глубине свыше 4 тыс. м.

По данным американских исследователей, только в одном Тихом океане хранится 1500 млрд. т руды в форме конкреций. Если использовать всего лишь 1 % этой руды, то человечество будет обеспечено марганцем на 285 лет, никелем — на 230, медью — на 17, кобальтом — на 1200 лет. Правда, в последнее время появились менее оптимистические цифры — от 1 до 3 млрд. т руды для всего Мирового океана (никеля от 15 до 50, меди — от 12 до 36, кобальта — от 2,5 до 7,5 млн. т).

По установленным в настоящее время критериям, месторождение считается рентабельным, если общее содержание меди и никеля в руде составляет примерно 2,5 %. Другое необходимое условие — плотность конкреций на дне. Она должна быть от 4 до 10 кг/м2 для месторождений площадью порядка 30 тыс. км2, что обеспечит добычу 3 млн. т руды в год. Этим требованиям пока отвечает лишь одна зона, расположенная в северной части Тихого океана между 5° и 20° с. ш. и 110° и 160° з. д. Именно в этой зоне, которая занимает 6 млн. км2 (в 10 раз больше территории Франции), ведется основная исследовательская работа. Однако до сих пор никто не смог доказать, что предполагаемая промышленная добыча, которая по-прежнему упирается в технические трудности, экономически рентабельна.

В настоящее время рассматриваются два пути разработки подводных месторождений: механический и гидравлический. Механическая фильера представляет собой систему ковшей, перемещающихся вдоль троса, соединенного с двумя судами. Сторонники этого проекта утверждают: чем проще система, тем меньше у нее шансов выйти из строя. Гидравлическая фильера — это или система откачки (морская вода — конкреции), или система с эрлифтом (морская вода — конкреции — воздух). Главной проблемой этой гигантской отсасывающей трубы длиной в 5 тыс. м остается установка головки землесоса, которая должна собрать как можно больше руды достаточно быстрыми темпами в среде, имеющей консистенцию меда и обладающей неровным рельефом. Переработка, которая заключается в разделении различных руд, содержащихся в конкрециях, не ставит никаких специфических проблем. Она осуществляется так же, как и переработка любой «классической» руды.

Причины увлечения многих стран конкрециями различны. Например, для США они представляют огромный интерес, поскольку им приходится импортировать 85 % марганца и почти полностью кобальт и никель. Есть и другие страны, также зависящие от ввоза этих металлов. Так, Япония импортирует 95 % меди, кобальта и марганца и около 75 % никеля.

В конце 1978 г. группе американских, японских, канадских и западногерманских исследователей удалось добиться успеха. С глубины 5000 м в Тихом океане к юго-востоку от Гавайских островов подводный земснаряд исследовательского судна «Седко-445» впервые извлек на поверхность большое количество так называемых марганцевых конкреций. Внешне они напоминали крупные клубни картофеля и содержали никель, кобальт, титан, медь, а также марганец.

По оценочным данным, запасы нефти на морском дне, как разведанные, так и предполагаемые, составляют 90 млрд. т, т. е. в 30 раз превышают объем ежегодной мировой добычи. В конце 70-х годов в прибрежных шельфах действовали около 400 разведочных буровых платформ, из них 60 — в Северном море; свыше 3 тыс. установок на платформах уже добывали нефть с морского дна.

Значение Мирового океана в жизни человечества стремительно возрастает. В нем таятся колоссальные запасы энергии. Люди научились утилизировать лишь ничтожную ее долю, но есть надежда, что в будущем океан может сделаться одним из основных поставщиков энергии.

Идея использовать энергию приливов и отливов не нова. Но путь от замысла к его воплощению в строительстве приливных электрических станций — ПЭС — оказывается тернистым.

На первый взгляд, что может быть проще! Отгородил залив от моря в узком месте плотиной, поставил турбины — и черпай энергию. Во время прилива вода, вливаясь в залив, заставит крутиться лопасти гидротурбины. То же самое произойдет и во время отлива, когда вода будет стремиться уйти обратно в море. Однако, когда в 1967 г. во Франции была сооружена приливная электростанция (ПЕС) «Ране», то оказалось, что ее строительство обошлось в три раза дороже обычной речной ГЭС.

В Советском Союзе ПЭС в основном смонтировали на заводе в Мурманске и затем уже отбуксировали к месту расположения — в губу Кислая. Там готовый блок посадили на заранее приготовленную «постель», загрузив песчаным балластом. Так, в 1968 г. появилась первая отечественная ПЭС — Кислогубская.

Этот вариант стал основой нынешних проектов ПЭС, например в Лумбовском заливе, у побережья Кольского п-ва на границе Баренцева и Белого морей. Приливы в этом месте достигают 7-метровой высоты. Здесь предполагается построить две дамбы общей длиной 2,8–5 км и в одной из них расположить 8 отверстий для пропуска воды, в другой — 6 наплавных четырехагрегатных блоков, аналогичных Кислогубской ПЭС. 24 капсульных агрегата общей мощностью 0,3 млн. кВт позволят выработать за год около 600 млн. кВт*ч электроэнергии.

В 30 с лишним раз большую мощность — 10 млн. кВт — разовьет будущая Мезенская ПЭС. Плотина длиной 86 км отсечет восточную часть акватории залива в створе мысов Михайловский и Абрамовский. На 17-километровом трапециевидном «выступе» встанут 100 наплавных блоков с 400 агрегатами.

Большие возможности для строительства ПЭС открываются на побережье Охотского моря, где наблюдаются 14-метровые приливы. Так, в Пенжинской губе предполагается построить ПЭС мощностью в 100 млн. кВт. (Для сравнения укажем, что мощность крупнейшей в мире Саяно-Шушенской ГЭС — 6,4 млн. кВт.) Море в заливе редко бывает спокойным. Ураганный ветер гонит на берег волны высотой 5–7 м. Ветер не утихает и зимой, когда столбик термометра нередко опускается к отметке минус 50°. Более 200 дней в году море покрыто ледяными полями толщиной до 2 м. Какую же прочность должна иметь станция, чтобы противостоять натиску воды и льдов! Поэтому здание ПЭС предполагается сделать с наклонным перекрытием, через гребень которого могут свободно переползать льды. В техническом отношении создание Пенжинской ПЭС вполне осуществимо.

В последнее время появился новый тип волновой гидростанции, названной изобретателями «Ракушкой». Ее необходимо строить на морской отмели, с резким перепадом глубин от 100 до 20 м. Лучше всего для этого подходит подводная сопка. На ее вершине, и следует монтировать «Ракушку» — полую бетонную полусферу диаметром. 80 м. От макушки полусферы вниз идет вал гидротурбины, вращающий генератор. Работа такого энергоблока основана на возрастании волны, приближающейся к отмели. Вода, достигнув отверстия в «Ракушке», падает вниз. По расчетам, за 1 с на лопасти турбины будут обрушиваться 80 м3 морской воды. Этого вполне достаточно для работы мощного (1,5 МВт) генератора.

Изобретатели считают, что подобные волновые ГЭС выгодно располагать полукругом. Тогда станции будут не только вырабатывать энергию, но и выполнять роль волнолома, т. е. защищать берега от разрыва. Внутри такой бухты корабли могут пережидать непогоду. Оснастив щели в нижней части «Ракушки» фильтрами, можно добиться дополнительно очищения морской воды от нефти. Наиболее подходящим местом для сооружения подобной электростанции считаются прибрежные воды Гавайских о-вов.

В 1978 г. в Японии начала давать ток плавучая электростанция, работающая на энергии морских волн. Оригинально ее техническое решение. Энергия волн преобразуется в камерах компрессионного типа в энергию сжатого воздуха. Последний из соплового аппарата поступает на лопатки турбины, вращающей электрогенератор. Энергоустановка смонтирована на судне водоизмещением 500 т, общая длина которого 80 м, ширина 12 м. Максимальная мощность плавучей электростанции составит 2 мВт. Специалисты считают, что энергоустановки подобного типа уже в настоящее время экономически конкурентоспособны по отношению к другим известным методам электроснабжения небольших населенных пунктов на побережье океана, где дополнительные транспортные расходы существенно увеличивают стоимость привозного органического топлива.

Уже подготовлен к технической реализации интересный проект по использованию океанских течений для производства электроэнергии, разработанный сотрудниками университета Турейна (штат Луизиана, США). Американские исследователи предполагают установить в районах относительно сильных течений турбину диаметром 170 м и длиной 80 м, изготовленную из алюминиевого сплава с предполагаемым сроком службы не менее 30 лет. Потоки течения воды станут вращать лопасти турбины, а через систему мультипликаторов, повышающих число оборотов, — и находящийся на ее валу электрогенератор. Турбину, установленную с помощью якоря на глубине в районе течений, будут поднимать на поверхность только для профилактического осмотра. По мнению авторов проекта, наибольшую проблему представит передача производимой электроэнергии по кабелю на берег. Предполагается, что стоимость электроэнергии на подобной электростанции окажется соответственно в 1,8 и 1,4 раза ниже, чем на тепловых и атомных станциях.

Когда в море появились плавучие острова — буровые, это было понятно: человека манили богатейшие кладовые нефти и газа. Но сегодня все чаще можно услышать о сооружении в море плавучих заводов и других сооружений сугубо сухопутного «профиля» — вплоть до аэродромов и гостиниц. Японская фирма «Хитачи Цозен», специализирующаяся на строительстве плавучих причалов, складов, холодильников, нефте- и газохранилищ, разработала проект плавучего отеля. В нем предусмотрены не только 500 номеров, но и парк, зрительный зал, спортивный центр, банкетные залы, теннисные корты, библиотека. Это должен быть настоящий «город» отдыха и развлечений, несмотря на то что размеры его относительно невелики: длина — 250 м, ширина — 70 м, высота — около 40 м.

Другая японская фирма выполнила заказ Саудовской Аравии на сооружение плавучего жилого комплекса для 3 тыс. рабочих морских нефтепромыслов. Плавучие отели и общежития строятся сейчас в Швеции, Финляндии, Норвегии и Бельгии.

Самое же большое сооружение в океане намерена возвести Японская ассоциация судостроителей — громадный аэродром площадью 576 га. Его собираются соорудить на пилонах в заливе Осака. Но этот пример — скорее исключение. Большинство же сооружений для океана возводится на плавучих платформах из стали и бетона.

Специалисты считают, что в будущем плавучие заводы и дома получат широкое распространение во всем мире.

Загрязнение морей и океанов

Человек в своей экономической деятельности издавна тянулся к прибрежным районам океанов и морей. И как результат — заселение морских побережий. В настоящее время в прибрежных зонах находится 60 % всех крупных городов с населением свыше миллиона человек. В некогда глухом районе Земли — на берегах Персидского залива — в последние годы появилось 150 промышленных комплексов, в том числе 60 нефтеперерабатывающих заводов, а также сталелитейные, цементные, химические предприятия. Степень урбанизации возрастает там ежегодно на 6—10 %, а численность населения — на 0,5 млн. человек.

По данным статистики, число людей, проживающих на морских побережьях в городах с миллионным населением, к началу XXI в. увеличится вдвое. Предполагается, что и тогда 90 % всех бытовых сточных вод и большой объем стоков промышленных, как и сейчас, без предварительной очистки будут сбрасываться в Мировой океан.

На берегах Средиземного моря расположены страны с населением 250 млн. человек. Ежегодно промышленные предприятия приморских городов выбрасывают в море тысячи тонн различных неочищенных отходов, сюда же сливается неочищенная канализационная вода. Огромные массы ядовитых веществ выносят в море крупные реки.

Миллионы туристов устремляются к Средиземному морю, надеясь «найти там солнце, песчаные пляжи и бирюзовую воду». Солнца там, действительно, много, но вместе с ним на пляже и в воде легко можно приобрести гепатит и грибковые заболевания.

Неудивительно, что, по рекомендации государственных органов здравоохранения Испании, губернатор туристского центра Аликанте запретил использовать для купания 20 пляжей и бухт. Близ Марселя, где туристы имели обыкновение после осмотра замка Ив купаться в море, ученые обнаружили только в 100 мл морской воды около 900 тыс. кишечных палочек, ведущих свое происхождение от фекалий. Это — наивысшая концентрация таких бактерий в Средиземном море.

В Италии карабинеры и пожарные следят за тем, чтобы никто не купался на закрытых властями пляжах. В особенности это касается Неаполя, где в 1973 г. в результате потребления в пищу зараженных моллюсков разразилась эпидемия холеры, в результате которой погибли 22 человека. Даже загорать там разрешено лишь на почтительном расстоянии от берега.

Более 100 из 120 крупных приморских городов Средиземноморья спускают свои канализационные воды неочищенными. Но и тогда, когда от воды не пахнет и в ней не видно грязи, есть причины для тревоги. Голубая средиземноморская вода во многих местах прозрачна до самого дна, но жизни в ней нет: ядовитые промышленные отходы отравили ее.

Естественному процессу обновления воды в Средиземном море препятствует рост содержания нефти, которая сокращает поверхностное испарение. В 1979 г. в 1 м2 поверхности Средиземного моря содержалось 108 мг нефти. Это значительно выше, чем в таком районе интенсивного судоходства, как Северная Атлантика, где на 1 м2 поверхности приходится 17,5 мг нефти.

С появлением супертанкеров связаны не только бесспорные достижения научно-технической мысли. Они стали одними из самых злостных виновников загрязнения окружающей среды. В погоне за баснословными прибылями, которые сулит эксплуатация крупных нефтеналивных судов, владельцы танкеров-гигантов пренебрегают элементарными нормами и правилами техники безопасности. В результате преступной небрежности судовладельческих компаний супертанкеры часто терпят кораблекрушения. За последние годы последствия таких катастроф ощутили на себе жители многих районов мира. Однако эффективные меры для предотвращения подобных бедствий пока так и не приняты.

Ежегодно в Средиземное море попадает 3 % нефти из потерпевших катастрофу танкеров. Однако в 10 раз больше нефти сбрасывается в море при их промывке. В бухте итальянского порта Триест, район которого когда-то славился рыбой и панцирными, нефть уничтожила всю флору и фауну.

Еще большую опасность для обитателей морей представляют промышленные отходы, прежде всего ртуть и другие тяжелые металлы. Эти отходы надолго остаются в воде или концентрируются в тканях животных. Отметим, что 85 % всех нечистот попадают в Средиземное море с континентов, причем большая их часть — из удаленных от моря промышленных центров и городов, прежде всего таких индустриальных стран, как Испания, Франция, Италия. Подавляющее количество загрязняющих веществ приносят в Средиземное море реки Рона, По и Эбро.

Почти все промышленные предприятия на испанском побережье Средиземного моря работают с плохо функционирующими очистными сооружениями или совсем без них. На Адриатическом побережье море отравляют 35 тыс. итальянских промышленных предприятий. Лишь одна лагуна Венеции, размеры которой составляют 500 км2, принимает неочищенный сброс от 76 заводов.

Сильно загрязнено Мраморное море. Ежегодно танкеры вместе с балластными водами сбрасывают в него более 4 млн. т нефти. Отходы промышленных предприятий, горы мусора на некогда великолепных пляжах, слив канализационных вод привели к тому, что редкий смельчак рискнет здесь искупаться.

Внутреннее Японское море издавна играет большую роль в жизни народа Страны восходящего солнца. Оно не только служит важным источником питания значительной части населения, но и является основной транспортной артерией, связывающей расположенные на его берегах крупные промышленные центры, которые обеспечивают почти 30 % национального дохода страны. Девять префектур этого региона дают ежегодно 52,4 млн. т стали, 1,8 млн. т этилена, более 4,5 млн. т бумаги. Ежедневно перерабатывается около 1870 тыс. баррелей нефти.

Но процветание имеет и оборотную сторону. Бесконтрольное хозяйничанье монополий, стремящихся к получению прибылей любой ценой, привело к сильному загрязнению в этом районе окружающей среды. Недооценка последствий нарушения экологических процессов привела в 50-х годах к человеческим жертвам. В результате ртутного отравления погибло несколько десятков человек в Минамате, рыбацком поселке в южной части острова Кюсю. К 1970 г. заражение окружающей среды приобрело в Японии трагические масштабы, поставив под угрозу жизнь человека.

В принятой в конце 1972 г. Международной конвенции по предотвращению загрязнений морей сбросами отходов указаны, в частности, наиболее вредные продукты химического загрязнения. Это, как уже отмечалось, нефть и нефтепродукты, хлорорганические пестициды, некоторые тяжелые металлы (ртуть, кадмий, свинец).

Количество поступающей за год в Мировой океан нефти, по различным источникам, составляет 5—10 млн. т. По данным ООН, в 1967 г. объем мировой добычи нефти составлял 1,85 млрд. т, в 1970 г. — 2,2 млрд. т. В 1979 г, мировая добыча нефти и газового конденсата составила 3,2 млрд. т. Несомненно, с ростом добычи нефти будет увеличиваться загрязнение Мирового океана. Можно предположить, что размеры загрязнения будут возрастать в связи со стремительным развертыванием добычи нефти на континентальном шельфе. В 1970 г. на таких промыслах добывалась 1/6 часть общего объема нефти, в дальнейшем добыча нефти в этих районах непрерывно увеличивалась.

В 1979 г. Карибский бассейн стал ареной крупнейшей экологической катастрофы в истории нефтеразведки. В результате аварии на расположенной в Мексиканском заливе буровой установке, принадлежащей мексиканской государственной компании «Пемекс», в море в течение нескольких месяцев вытекала нефть. «Черный прибой» неотвратимо надвинулся на северо-восток, покрыв свыше 200 км пляжей американского штата Техас слоем нефти.

В 1978 г. побережье Бретани (Франция), в четвертый раз за последние десять лет, стало ареной морской катастрофы — на прибрежных рифах разбился гигантский супертанкер «Амоко Кадис». 230 тыс. т сырой нефти, находившейся в его танках, разлилось гигантским пятном на 200 км вдоль побережья одного из живописнейших районов Франции. На многие месяцы и даже годы оказались погубленными рыбные и моллюсковые промыслы на десятках километров Бретонского побережья; морской фауне в этом районе был нанесен неисчислимый ущерб.

Нефть, разлитая в море, растекается на поверхности воды, образуя тонкую пленку, которая прерывает обмен воды с газами атмосферы и тем самым нарушает жизнь морского планктона, создающего кислород и первичную продукцию органического вещества в океане.

Нефтяное загрязнение морей пагубно отражается на живых организмах. Нефтепродукты подвергаются естественному окислению весьма медленно, и поэтому их количество увеличивается из года в год. В условиях Арктических морей нефть может сохраняться до 50 лет. На полное окисление 1 л нефти при средних климатических условиях требуется запас кислорода, растворенного в 400 тыс. л морской воды. Потери такого количества кислорода пагубно отражаются на жизни многих морских организмов.

Нефтепродукты загрязняют не только поверхность воды, но и распространяются по всей толще, оседают вместе с илом на дно и способны к вторичному загрязнению воды. Легкие фракции нефти находятся в виде пленки на поверхности и в виде водного раствора в толще воды, а утяжеленные фракции оседают на дно моря. Таким образом, нефть представляет опасность для живых организмов, обитающих на поверхности, в толще воды и на дне.

Установлено, что содержание в воде нефтепродуктов свыше 16 мг/л вызывает гибель рыб, нарушает нормальное развитие икры. Замечено, что случаи катастрофического разлива нефти в море приводят к уничтожению множества морских птиц. Нефть проникает в оперение и изменяет структуру пера, ухудшая плавучесть и теплоизолирующие свойства. Когда птицы начинают чиститься клювом, нефть и мазут проникают внутрь организма. Это приводит к полному отравлению организма. Кроме того, в районе разлива нефти уничтожаются кормовые ресурсы. Это заставляет оставшихся в живых птиц покидать район загрязнения нефтью. Разлившаяся нефть представляет опасность и для крупных морских животных — китов, тюленей и дельфинов. Нефтяная пленка пристает к поверхности тела животных. У тюленей мех теряет теплоизолирущие свойства и вызывает воспаление глаз, которое кончается слепотой.

Морям и океанам — чистые воды

Вопросы загрязнения моря судами привлекли внимание международных организаций в 1954 г., когда начала разрабатываться первая Международная конвенция по предотвращению загрязнения моря нефтью. Она была принята в 1958 г. и дополнена в 1969 и 1971 гг. В 1958 г. была создана межправительственная Морская консультативная организация, основное значение которой вначале ограничивалось контролем за соблюдением положений Конвенции.

Придавая важное значение борьбе за охрану морской среды, Советский Союз активно участвовал в новой Международной конференции, созванной в Лондоне в октябре 1973 г., где была принята Международная конвенция по предотвращению загрязнения с судов. По сравнению с прежним новое соглашение имеет немало преимуществ. Прежде всего, Конвенция 1973 г. касается не только нефти, но и других перевозимых вредных веществ, а также отходов (сточные воды, мусор), образующихся на судах в результате их эксплуатации. В Приложениях к основному документу изложены международные стандарты допустимых сливов, даны рекомендации, касающиеся оснащения судов оборудованием, необходимым для сохранения чистоты моря. Предусмотрены даже конструктивно-технические решения и технологические меры. Сама Конвенция содержит статью, согласно которой каждое судно обязано иметь сертификат — свидетельство о том, что корпус, механизмы а прочая оснастка соответствуют правилам предотвращения загрязнения моря (они также сформулированы в Приложениях).

Соблюдение этой статьи проверяется во время специальных инспекций при заходе в порты. Нарушителям грозят ощутимые санкции. Прежнее соглашение охраняло чистоту морей лишь в сравнительно узкой полосе так называемых запретных зон. Теперь «запретной» становится вся акватория Мирового океана.

Учитывая печальные уроки недавнего прошлого, конвенция устанавливает особо жесткие нормы содержания нефти в воде, сбрасываемой танкерами. Если же эти суда имеют вместимость более 70 тыс. брутто-регистровых т, то они должны располагать отдельными емкостями для приема чистого балласта — в такие отсеки нефть запрещается грузить вообще. Для всех особых районов (к ним отнесены, в частности, Балтийское, Средиземное и Черное моря) принят единый режим, а именно: полный запрет слива нефтесодержащих вод с танкеров и сухогрузных судов вместимостью свыше 400 брутто-регистровых т. Все сбросы с них должны выкачиваться только на береговые приемные устройства.

За последние годы, особенно после принятия в 1969 г. Советским Союзом Международной конвенции по предотвращению загрязнения моря нефтью, на отечественных морских судах, в портах и других объектах морского флота значительно усилилась работа по обеспечению сбора и утилизации отработанных нефтепродуктов, поддержанию чистоты портовых акваторий, строительству новых и повышению эффективности действующих сооружений и устройств для очистки загрязненных сточных вод.

В законодательстве СССР предусмотрены строгие меры ответственности за загрязнение моря веществами, вредными для здоровья людей или для живых ресурсов моря. Лица, виновные в этих нарушениях закона, могут быть привлечены в уголовной ответственности с применением таких мер наказания, как лишение свободы, исправительные работы или штраф.

В дополнение к действующему законодательству в 1978 г. Совет Министров СССР принял Постановление по вопросу о порядке возмещения материального ущерба, причиняемого государству загрязнением моря. Согласно этому постановлению, органам по регулированию использования и охране вод предоставлено право предъявлять государственным предприятиям, организациям и учреждениям, колхозам и иным кооперативным и общественным организациям и гражданам СССР, а также иностранным лицам иски о взыскании в доход государства средств в возмещении ущерба, причиненного загрязнением внутренних морских и территориальных вод СССР вследствие незаконного сброса в них с судов и других плавучих средств (либо непринятия необходимых мер к его предотвращению) веществ, вредных для здоровья людей или живых ресурсов моря, либо смесей, содержащих такие вещества свыше установленных норм. Методика подсчета указанного ущерба определяется Министерством мелиорации и водного хозяйства СССР с участием Министерства финансов СССР и других заинтересованных организаций.

В настоящее время все новые транспортные суда имеют сепарационные установки для очистки воды от нефти, а танкеры — устройства, позволяющие осуществлять мойку грузовых танков без слива нефтеостатков в море. Суда старой постройки оснащаются таковыми при очередных ремонтах. В нефтеналивных портах Черноморского бассейна (Туапсе, Новороссийске, Батуми и др.) построены и успешно эксплуатируются береговые сооружения для приема с танкеров и очистки загрязненных балластных вод.

Для очистки поверхности портовых акваторий от мусора и аварийно разлитых нефтепродуктов начато серийное производство плавучих нефтемусоросборщиков. С целью повышения ответственности капитанов судов, а также обеспечения контроля за выполнением мероприятий по предотвращению загрязнения моря нефтью на морских судах заведены специальные журналы, в которых фиксируются все производимые грузовые операции с нефтью и нефтепродуктами, отмечается место и время сдачи или слива судами загрязненных нефтью сточных вод и нефтеостатков.

Танкеры оборудуются замкнутыми промывными системами. На транспортных судах широко применяются нефтеводные сепараторы, специальные емкости для мусора и загрязненной воды (содержимое этих емкостей в портах принимают суда-сборщики либо оно откачивается на очистные станции). Для уничтожения следов нефти используют эффективные химикаты. В советских портах работают специальные суда, собирающие с поверхности воды не только нефтяную пленку, но и твердый мусор. Министерство морского флота СССР разработало и ввело в действие строгое Наставление по предотвращению загрязнения моря нефтью.

Советский танкер «Крым» водоизмещением в 182 тыс. т — первый танкер в мире, полностью отвечающий стандартам, установленным Международной конвенцией 1973 г. по борьбе с загрязнением моря. Двойное дно предохранит морские воды от загрязнения, даже если судно сядет на мель.

В 1978 г. утвержден проект необычного танкера, созданный ленинградскими конструкторами-специалистами. Он имеет 16 танков для перевозки одновременно четырех сортов различных нефтепродуктов. 12-метровая осадка позволяет танкеру заходить в большинство гаваней планеты.Его дедвейт — 65 тыс. т. Рождение нового судна, которое получило имя «Победа», — еще одно проявление заботы о сохранении окружающей среды.

У танкера — двойные борта и двойное дно. Между бортами предусмотрено свободное пространство шириной в два метра. Иными словами, обшивка судна как бы одета в дополнительную металлическую «рубашку», которая не даст грузу уйти в воду, если, скажем, танкер сядет на мель или попадет в иную беду. Для того чтобы предотвратить загрязнение моря, конструкторы «поручили» свободному пространству между корпусами важную задачу. Оно заполнится водой в период балластных переходов. Войдя в порт, судно встает под погрузку. Прежде всего, конечно, необходимо откачать эту воду обратно в море. Она будет такой же, какой ее взяли, — абсолютно чистой. Нынче на судах балластная вода принимается прямо в грузовые танки.

Новый танкер отличает еще одна важная особенность. Сейчас все подобные суда оснащены специальными системами обогрева груза: при перевозке мазута или вязкой нефти требуется поддерживать в танках определенную температуру. Теперь от холодного воздействия воды за бортом груз в значительной степени будет предохранять второй корпус, а также образованная между корпусами воздушная подушка. Получается своеобразный «термос».

На танкере предусмотрено все, чтобы отвести возможные неприятности. В частности, разрабатывается новая навигационная система, которая позволит ему автоматически расходиться сразу с двенадцатью судами.

Намечено построить целую серию таких судов. Они придут на смену танкерам, срок эксплуатации которых истекает.

В феврале 1976 г. было опубликовано постановление ЦК КПСС и Совета Министров СССР «О мерах по предотвращению загрязнения бассейнов Черного и Азовского морей». Это постановление свидетельствует о неустанной заботе, которую Советский Союз проявляет об охране окружающей среды.

Министерствам и ведомствам, в ведении которых находятся предприятия и организации, сбрасывающие неочищенные сточные воды в реки и другие водоемы бассейнов Черного и Азовского морей, установлены задания по проведению мероприятий по полному прекращению сброса путем внедрения прогрессивной технологии производства, предотвращающей загрязнение внешней среды, комплексной переработки сырья, утилизации промышленных отходов и строительства эффективных очистных сооружений и обезвреживающих установок.

В постановлении указаны города и населенные пункты, а также наиболее крупные предприятия, шахты и организации, где необходимо провести мероприятия по полному прекращению сброса неочищенных сточных вод в реки и другие водоемы бассейнов Черного и Азовского морей.

Все суда и другие плавучие средства и установки (платформы) Министерства морского флота, Министерства рыбного хозяйства СССР и других министерств и ведомств, находящиеся на Черном и Азовском морях и на впадающих в них реках, должны быть оснащены необходимым оборудованием для очистки или сброса нефтесодержащих и других загрязненных вод и мусора и сдачи их на плавучие или береговые приемные устройства.

В целях обеспечения охраны уникальных по природным условиям прибрежных районов Черного и Азовского морей и планомерного осуществления мер по рациональному использованию их естественных богатств предложено разработать региональную схему охраны природного комплекса и рационального использования естественных ресурсов этих морей на перспективу до 2000 г.

Совсем недавно был реализован проект глубоководного выпуска сточных вод г. Ялты, позволивший очистить побережье от большого количества мелких выпусков сточных вод. Углубление струи выпуска происходит на глубине 70–80 м без ее подъема на поверхность моря. Сточные воды попадают в зону кругового черноморского течения, которое не подходит к берегу ближе, чем на 4 км.

В июле 1976 г. Совет Министров СССР принял постановление «О мерах по усилению охраны от загрязнения бассейна Балтийского моря». Советам министров РСФСР, Белорусской, Литовской, Латвийской и Эстонской ССР, а также соответствующим министерствам и ведомствам СССР предписано осуществить комплекс мероприятий по полному прекращению сброса неочищенных сточных вод в реки и другие водоемы бассейна Балтийского моря. Указаны города и другие населенные пункты, наиболее крупные предприятия и организации, где требуется осуществить мероприятия по полному прекращению сброса неочищенных сточных вод в реки и другие водоемы бассейна Балтийского моря.

Министерству морского флота, Министерству рыбного хозяйства СССР и другим министерствам и ведомствам, имеющим суда, иные плавучие средства и установки на Балтийском море и на впадающих в него реках, поручено оснастить такие средства необходимым оборудованием для очистки или сбора нефтесодержащих и других загрязненных вод, мусора и сдачи их на плавучие или береговые приемные устройства. Устанавливаются задания по приему с 1 января 1977 г. на очистные сооружения загрязненных вод с судов, плавающих в бассейне Балтийского моря.

Ряду министерств СССР и советам министров РСФСР, Белорусской, Литовской, Латвийской и Эстонской ССР предложено усилить контроль за соблюдением предприятиями, организациями и гражданами установленных правил применения ядохимикатов, а также за выполнением сельскохозяйственными водопользователями требований по очистке сточных вод, сбрасываемых ими в реки и другие водоемы бассейна Балтийского моря. Соответствующим организациям поручено разработать региональную схему охраны комплекса природных условий и рационального использования естественных ресурсов прибрежного района Балтийского моря на перспективу до 2000 г.

Балтийское море почти же имеет выхода в Мировой океан. По подсчетам специалистов, период водообмена Балтики довольно долгий — 50, а для донных слоев — 100 лет. Волны моря омывают берега высокоразвитых индустриальных государств. И здесь слову «омывают» следует придать самый прозаический смысл. В море сбрасываются непосредственно или попадают с водами рек стоки коммунальных и промышленных предприятий, удобрения и ядохимикаты с полей, нефтепродукты и др. Недостаток кислорода в донных слоях, «цветение воды», ряд других нежелательных явлений требуют постоянной и эффективной борьбы с любыми загрязнениями, больших совместных усилий стран, окружающих Балтику. В соответствии с Конвенцией, заключенной Прибалтийскими государствами, в Балтийском море категорически запрещено сбрасывать за борт нефтяные отходы и воду после промывки трюмов грузовых и нефтеналивных судов.

Правительство СССР в 1978 г. одобрило Конвенцию по защите морской среды района Балтийского моря 1974 г.

Море загрязняется нефтью не только в результате аварий танкеров, но и из-за неисправностей в них, способствующих утечке горючего. Найти в таком случае виновного до сих пор было невозможно. С 1979 г. в Балтийском море начался эксперимент, предложенный шведскими специалистами. Теперь перед заливкой в танкеры нефти в нее добавляют комбинации мельчайших частиц металла, особые для каждого судна. При утечке нефти анализ найденного в море пятна позволит быстро определить «хозяина» потерянного топлива и принять нужные меры. По решению состоявшейся в Стокгольме Международной конференции по защите Балтийского моря, испытания будут проведены на нескольких судах. Однако позднее свои персональные метки будет получать каждый идущий через Балтику танкер.

В Польше разработан химический препарат для очистки больших водных поверхностей от загрязнений нефтепродуктами. Новое средство неядовито, оно быстро впитывает в себя нефть и другие нефтепродукты, образующие пленку на поверхности воды. Поскольку новое вещество не тонет и не растворяется в воде, его легко собирать с поверхности. Препарат прост в изготовлении.

Мощный «фильтр» защищает чистоту акватории Финского залива. На о-ве Белый принята в эксплуатацию первая очередь Ленинградской станции аэрации, рассчитанная на очистку 1,5 млн. м3/сут сточных вод. Создание этого крупного очистного комплекса является важным этапом реализации программы защиты окружающей среды — составной части комплексного плана экономического и социального развития Ленинграда. Строительство трех таких станций позволит полностью очищать все сточные воды города.

Специальное судно типа катамаран, предназначенное для очистки водной поверхности от загрязнений, сконструировано шведской фирмой. Судно имеет длину 12 м и ширину 4,6 м. На нем установлены четыре ленточных транспортера, покрытых специальным составом, который впитывает маслянистые вещества, загрязняющие поверхность, и отталкивает воду. Собранные с поверхности воды маслянистые вещества сливаются в специальный контейнер.

Большие работы проводятся на дальневосточных морских портах. Введена в строй действующих первая очередь очистных сооружений в порту Восточном — крупнейшей транспортной новостройке Дальнего Востока. Сложная система состоит из десятков километров трубопроводов, станции биологической очистки, морского нефтемусоросборщика.

Дальневосточные порты обеспечены плавучими сборщиками нефтепродуктов, загрязненных вод, мусора. На побережье возводятся очистные сооружения с биологической обработкой сточных вод. Выделены плавучие средства для обслуживания заходящих судов. Специализированное судно «Лазурная» предназначено для сбора загрязненных вод и химической очистки судовых танков. После очистки на береговых пунктах воду будут спускать в бухту. Сейчас только в Находке и Владивостоке насчитывается более десяти морских «санитаров».

В настоящее время охрана морей и океанов не может ограничиться национальными рамками. Необходимы строгие международные соглашения по этому вопросу. Это дает возможность разработать научно обоснованную рекомендацию по международной регламентации охраны океана от загрязнения. Несомненно, совместные усилия внесут значительный вклад в использование богатств океана на благо всего человечества.

Морской щит Ленинграда

В 1979 г. ЦК КПСС и Совет Министров СССР приняли постановление «О строительстве сооружений защиты г. Ленинграда от наводнений», предусматривающее большой объем уникальных гидротехнических работ. Рассчитанные на десятилетие, они сыграют особую, поистине историческую роль в судьбе Ленинграда…

В истории Северной войны (1700–1721 гг.) говорится о военном совете, который выбирал место для крепости, могущей преградить путь в Неву иноземному флоту. Постановили строить ее не на правом берегу Невы при впадении в нее р. Охты (здесь издавна существовало русское поселение, превращенное шведами в город-крепость Ниеншанц и отвоеванное нашими войсками), а ближе к морю. Выбор пал на Заячий остров, где через несколько дней, 16 мая 1703 г. (27 мая по н. с.), и была «крепость заложена и именована Санкт-Петербурх» (ныне — Петропавловская).

Но если создание Петропавловской крепости диктовалось соображениями военного характера, то решение о переносе столицы к Балтике принималось с учетом стратегических, экономических, политических интересов государства, с целью превратить Россию в мощную морскую державу. Энергично действуя «наперекор стихиям», тогда, разумеется, не могли предвидеть, что новый город будет вынужден с таким напряжением противостоять стихии.

Вопреки первоначальным градостроительным планам Васильевский остров так и не стал центром Петербурга — залив рядом и почти ежегодно выходит из берегов. Здесь, на Васильевском, у здания Горного института находится главный водомерный пост, фиксирующий высоту подъема воды. Нулевая отметка футштока этого поста соответствует среднему, многолетнему уровню воды на Неве. Эту отметку принято называть ординаром. Весьма часто она накрывается волнами, но беда начинает грозить после того, как вода превысит ординар на 1,5 м. За 276 лет существования города было 240 наводнений, и 17 из них — за последнее десятилетие.

Сохранилось много документов о местных наводнениях. Уже в первый год работ вода смыла с Заячьего острова часть строительных материалов, заготовленных для крепости. Спустя три года в письме Меньшикову Петр I сообщал, что в его покоях вода стояла на 21 дюйм выше пола.

Трижды отмечались подлинные катастрофы. Осенью 1777 г. вода поднялась на 3,1 м и опустошила большую часть города. Страшные бедствия вызвали наводнение в ноябре 1824 г., хорошо известное нам по «Медному всаднику» А. С. Пушкина. Спустя сто лет, в сентябре 1924 г., уровень воды поднялся на 3,69 м, затопив почти половину Ленинграда. Аналогичная картина наблюдалась и в 1929 г. Только в ноябре 1978 г. вода в Неве трижды поднималась выше двухметровой отметки ординара. При подъеме реки до 3,5 м затопленной оказывалась пятая часть города.

Долгое время, почти лет двести, господствовало мнение, что вода в Неве поднимается из-за сильных ветров, которые всегда дуют в дни наводнений. На самом же деле причина более сложная. Ленинградские наводнения возникают в результате действия в зоне Балтийского моря и Финского залива воздушных вихрей — циклонов, которые зарождаются у берегов Исландии. Проносясь над Балтикой, циклон образует так называемую длинную волну. Она заходит в Финский залив и продвигается по нему со скоростью 50–60 км/ч, иногда и вдвое большей. По мере того как залив сужается и глубины его уменьшаются, гребень длинной волны непрерывно повышается. Она усиливается в Финском заливе ветровым нагоном и при продвижении к устью Невы не встречает сопротивления. Эта колоссальная сила врывается в Невскую губу, затем в устье Невы и быстро поднимает воду.

Изучив механизм зарождения нагонных наводнений, легче было совершенствовать систему прогнозов и оповещений. В Таллине, Нарве, Кронштадте, на ряде островов Финского залива созданы наблюдательные станции. На основе их сведений о прохождении длинной волны и с учетом остальных погодных факторов в северо-западном управлении Гидрометеослужбы оперативно ведутся расчеты, когда и насколько поднимется уровень воды. Сейчас довольно точные прогнозы удается дать за 5–8 часов до начала атаки с моря. Этого времени уже достаточно, чтобы город принял срочные меры.

Однако как ни важны своевременные прогнозы, они не отменяют ударов стихии. А именно такая задача вытекает из постановления ЦК КПСС и Совета Министров СССР: избавить Ленинград от наводнений — малых, больших, катастрофических. Избавить навсегда!

В разное время выдвигалось немало идей по защите города. Вскоре после того как правительство утвердило в 1966 г. Генеральный план развития Ленинграда, началось составление технико-экономического обоснования проекта защиты. Затем в течение пяти лет разрабатывался сам технический проект. Главной организацией и на этом этапе стало Ленинградское отделение института «Гидропроект», имеющего большой опыт создания многих крупных гидротехнических сооружений, включая электростанции на Волхове, Свири, Днепре, Енисее. В эту работу включилось еще более 50 научных и проектных институтов и организаций. Анализировались все наблюдения прошлых лет, велись теоретические расчеты, исследования и эксперименты на гидравлических и математических моделях с привлечением электронно-вычислительной техники. Очень тщательно прорабатывалась тема гидрологического и санитарного состояния Невской губы — в изучении этих вопросов участвовало 20 научных институтов.

Трасса защиты пойдет от поселка Горская на северном берегу Финского залива к Кронштадту и дальше к г. Ломоносов на южном берегу. Ее общая длина — 25, 380 км, из них 22 приходятся на акваторию залива.

Это будет не какой-то вал, а сложный комплекс сооружений. Его образуют 11 каменно-земляных дамб, два пролета — шириной 110 и 200 м — для пропуска судов различного водоизмещения, 64 отверстия, каждое шириной по 24 м. Все это обеспечит хорошую проточность и водообмен акватории Невской губы.

Но как только центральный пост управления на о-ве Котлин, где стоит Кронштадт, примет прогноз об ожидающемся подъеме воды на 1,5 м и выше, диспетчер даст команду автоматическим и телемеханическим устройствам. Откатные ворота и сегментные затворы закроют пролеты, отверстия, и вместе с дамбами этот, уже единый и непроницаемый щит примет на себя натиск водной стихии, преградит путь не только к Ленинграду, но и к Кронштадту, остальным пригородам на побережье Невской губы.

Исполинские затворы в течение получаса преградят по тревоге доступ нагонной волны. Скорость — немаловажный фактор в борьбе со стихией. С момента обнаружения волны до встречи с ней остается всего несколько часов. Между тем каждые ворота весят 5 тыс. т. Их створки будут выкатываться навстречу друг другу по рельсам, проложенным на дне залива.

В истории Ленинграда не отмечались подъемы воды до 5 м, но вероятность такого наводнения не исключена. Вот почему предусмотрена защита от уровня воды в пять с половиной метров.

По сложности, стоимости, объему работ предстоящее сооружение, действительно, не имеет аналогов, оно, что называется, «на грани фантастики». Экономисты же подсчитали — эта фантастика, воплощенная в реальность, окупится уже через шесть лет.

Не станет ли причиной наводнений сама Нева, если ее течению в случае опасности наступления стихии с моря преградят путь защитные сооружения?

Отделенной от залива окажется довольно большая акватория — почти 400 км2. При закрытых водопропускных и судопропускных устройствах уровень воды в ней от стока Невы способен подниматься всего на два сантиметра в час. Наводнения же, как свидетельствуют многолетние наблюдения, продолжаются не более суток. Таким образом, невские воды не смогут вызвать сколько-нибудь серьезного отклонения от обычных норм.

По гребню сооружений через Финский залив пройдет, шестиполосная автомагистраль. Она станет частью скоростной кольцевой дороги вокруг Ленинграда, которая избавит город от транзитных перевозок. Чтобы машины и корабли не задерживали друг друга, под судоходными каналами, будут построены тоннели, а над водопропускными отверстиями — мосты. На разных участках запроектированы транспортные развязки, пешеходные переходы, спуски к воде. Вдоль защитных сооружений будет благоустраиваться приморская пригородная зона, появятся новые базы отдыха. По сути, это еще одно «кольцо здоровья» для многомиллионного города. Будут созданы пляжи, лодочные станции, причалы для яхт. Вдоль трассы и на ближних к ней островах возникнет живописная курортная зона.

Прекрасная панорама города откроется с этой удивительной морской автострады, пересекающей залив от Ломоносова до противоположного берега, через о-в Котлин, мимо могучих бастионов Кронштадта.

Однако не только сторожевые функции возлагаются на гидротехническое сооружение. Не случайно его строительство по инициативе ленинградской партийной организации внесено в перспективный план экономического и социального развития города. В полной безопасности можно будет возводить западный массив Ленинграда, его морской фасад.

Одна из особенностей проекта в том, что он способствует успешному выполнению важной градостроительной задачи: формированию величественного морского фасада Ленинграда на всем более чем 25-километровом его протяжении по берегам залива. Для этого уже сейчас делается многое. Поднимаются низменные болотистые участки. Вскоре здесь вырастут крупные жилые массивы, здания общегородского значения. Первой из них вошла в строй красивая, видимая с дальних водных подступов к Ленинграду 17-этажная гостиница «Прибалтийская».

А не повлияет ли морской щит на экологическую сферу?

На протяжении ряда лет влияние гидротехнических сооружений на гидрологию, гидрохимию, санитарное состояние города, как уже говорилось, изучалось многими научно-исследовательскими организациями. Все они пришли к выводу, что не только нет никакой опасности, но, даже наоборот, будущие условия должны стать лучше нынешних. Огромная «гребенка», создав равные уровни в Невской губе и заливе, ни в коей мере не помешает протоку воды, а местами и усилит прибрежное течение. Не изменится температура воды, ее соленость. Даже волны и те не «пострадают».

Исследования показали, что санитарный режим в Невской губе не изменится, причем к моменту завершения строительства полностью прекратится сброс неочищенных стоков в Неву и ее притоки. Мощные очистные сооружения, которые создаются сейчас на искусственном острове в Финском заливе и в пос. Ольгино, будут «перерабатывать» все промышленные и бытовые стоки и возвращать морю только чистую воду. Проект прошел государственную экспертизу с участием видных специалистов и ученых и получил высокую оценку. Тем не менее исследования и тщательные проверки заложенных в проекте решений будут продолжаться.

Если подняться над городом на вертолете, можно увидеть, что кое-где уже проглядывают наметки будущей системы. Ведутся работы под Ломоносовым, в поселке Горское, на о-ве Котлин. Углубляются каналы, намываются берега. И с каждым годом контуры огромной строительной площадки будут проступать все отчетливее. Возведение морского щита Ленинграда комсомол объявил своей ударной стройкой.

Предстоит по основным сооружениям защиты вынуть 15 млн. м3 грунта, уложить в тело сооружений 26 млн. м3 мягких и скальных грунтов и 2 млн. м3 бетона и железобетона, смонтировать 40 тыс. т металлоконструкций и оборудования.

Создание защиты предполагается завершить к 1990 г.

Решение о создании комплекса защиты от наводнений — яркое свидетельство постоянной заботы партии и государства о городе Ленина, о ленинградцах.

Заключение

В решениях XXVI съезда КПСС, ставших боевой программой действий для всех советских людей, отмечается важное значение охраны водных ресурсов.

В «Основных направлениях экономического и социального развития СССР на 1981–1985 годы и на период до 1990 года» предусмотрено ускорение строительства водоохранных объектов в бассейнах Черного, Азовского, Балтийского, Каспийского морей и в важнейших промышленных районах страны. В них намечено осуществление мер по усилению охраны морей, рек и других водоемов Арктического бассейна от загрязнения. В дальнейшем будут увеличены мощности систем оборотного и повторного использования вод, разработаны и внедрены на предприятиях бессточные системы водоиспользования, улучшена охрана водных источников (в том числе малых рек и озер) от истощения и загрязнения. Продолжатся работы по охране и рациональному использованию уникальных природных комплексов, и прежде всего Байкала. Специалисты приступят к созданию автоматизированных систем управления водохозяйственными комплексами в бассейнах важнейших рек европейской части страны и Средней Азии.

Большое внимание будет уделено обеспечению населения доброкачественной питьевой водой, повышению обеспеченности городов и других населенных пунктов централизованным тепло- и водоснабжением.

Только на сооружение систем очистки вод на предприятиях в нашей стране ежегодно выделяется 2 млрд. руб. Начато проведение экспертизы предприятий и сооружений с экологической точки зрения. Устанавливается предельно допустимый для предприятий выброс отходов с тем, чтобы их совокупность в данном районе не создавала опасного для здоровья загрязнения. В результате принятых в последние годы мер значительно уменьшилось количество неочищенных сточных вод. Новые предприятия проектируются с внедрением бессточной технологии.

Для осуществления больших водохозяйственных программ выделяются крупные капиталовложения. XXVI съездом КПСС предусмотрено ввести в эксплуатацию за счет государственных капитальных вложений 3,4–3,6 млн. га орошаемых земель, обводнить в пустынных, полупустынных и горных районах 26–28 млн. га пастбищ. Продолжатся работы по орошению земель и их сельскохозяйственному освоению, а также по использованию гидроэнергоресурсов, строительство Дунай-Днестровской и Каховской оросительных систем, второй очереди канала Днепр — Донбасс. Начнется сооружение третьей очереди Северо-Крымского канала и первой очереди Приазовской оросительной системы, строительство четвертой очереди Большого Ставропольского канала. Намечено проведение подготовительных работ по переброске части стока северных рек в бассейн Волги, научные и проектные проработки по переброске части вод сибирских рек в Среднюю Азию и Казахстан.

Выполнение решений XXVI съезда КПСС имеет большое значение для комплексного использования и охраны водных ресурсов. Каждому из нас необходимо заботиться о водных источниках, которые связаны с трудом и здоровой жизнью человека.

Литература

Бабкин В. И., Воскресенский К. П. Современная оценка водных ресурсов Советского Союза. — Водные ресурсы, 1976, № 5, с. 5—14.

Бондаренко Л. М. Оценка выноса продуктов эрозии почвы, биогенных элементов и пестицидов с сельскохозяйственных угодий богарного земледелия в водные объекты. — В кн.: Материалы 5-го Всесоюзного симпозиума по современным проблемам самоочищения и регулирования качества воды. М., 1975, т. 4, с. 40–46.

Бендеров К. Н., Дьяконов К. П. Водохранилище и окружающая природная среда. М.: Наука, 1976. 136 с.

Воропаев Г. В. Задачи и организация натурных исследований в связи с проблемой перераспределения водных ресурсов. — Водные ресурсы, 1976, № 3, с. 3—12.

Дворов И. М. Гелиотермальная энергетика. М.: Наука, 1976. 192 с.

Дерпгольц В. Ф. Мир воды. Л.: Недра, 1979. 253 с.

Долгополов К. В., Федорова Е. Ф. Вода — национальное достояние. М.: Мысль, 1973. 255 с.

Дунин-Барковский Л. В., Моисеев Н. Н. Система моделей перераспределения речного стока СССР. — Водные ресурсы, 1976, № 3, с. 13.

Емельянов Л. Г. Растения и вода. Минск: Урожай, 1977. 211 с.

Карцев А. А., Вагин С. Б. Вода и нефть. М.: Недра, 1977. 111 с.

Кутырин И. М. Охрана воздуха и поверхностных вод от загрязнения. М.: Наука, 1980. 87 с.

Ластков О. А. О гигиеническом значении структурных изменений воды. — Гигиена и санитария, 1977, № 1, с. 73–76.

Лобина И. Г. Вопросы гематологии, радиобиологии и биологического действия магнитных полей. Томск, 1965, с. 93–97.

Львович А. И. Защита вод от загрязнения. Л.: Гидрометеоиздат, 1977. 167 с.

Мировой водный баланс и водные ресурсы Земли. Л.: Гидрометеоиздат, 1974. 637 с.

Никитин М. В., Ахметьева Н. П., Санин М. В. Ресурсы солоноватых и соленых подземных вод СССР. М.: Наука, 1978. 258 с.

Охрана водных ресурсов. М.: Колос, 1979. 247 с.

Очистка производственных сточных вод. М.: Стройиздат, 1979. 320 с.

Привалов П. Л. Вода и ее роль в биологических системах. — Биофизика, 1968, т. 13, вып. 1, с. 163–177.

Проектирование бессточных схем промышленного водоснабжения. Киев: Будiвельник, 1977. 204 с.

Риффо К. Будущее — океан. М.: Мир, 1978.

Селевич С. Б. Шельф: Освоение, использование. Л.: Гидрометеоиздат, 1977.

Федоров Е. К. Экологический кризис и социальный прогресс. Л.: Гидрометеоиздат, 1977.

Чичерова Н. Л. Основные периоды развития отечественных средств для бурения глубоких скважин. — В кн.: История горной науки и техники. Тбилиси: Мецниереба, 1979. с. 212–221.

Шикломаное И. А. Орошение и речной сток. — Водные ресурсы, 1976, № 5, с. 14–25.

Эйзенберг Д., Кауцман В. Структура и свойства воды. Л.: Гидрометеоиздат, 1975. 280 с.

Примечания

1

Правда, 1979, 22 сент.

(обратно)

Оглавление

  • От авторов
  • Гидросфера
  •   Вода и биосфера
  •   Единство вод Земли
  •   Поверхностные воды
  •   Подземные воды
  •   Водные ресурсы СССР
  • Вода и жизнь
  •   Физика и химия воды
  •   Вода в живом организме
  •   Биологическое значение талой и льдоподобной воды
  •   Вода и растения
  • Вода и человек
  •   Загрязнение воды и здоровье
  •   Вода, которую мы пьем
  •   Фабрики питьевой воды
  •   Гидроэнергетика и орошение
  •   Богатство голубых гектаров
  • Охрана вод суши
  •   Проблемы стока
  •   Бессточные производства
  •   Очистка сточных вод
  •   Охрана малых рек
  •   Управление использованием и охраной вод суши
  • Мировой океан и жизнь на Земле
  •   Ресурсы Мирового океана
  •   Загрязнение морей и океанов
  •   Морям и океанам — чистые воды
  •   Морской щит Ленинграда
  • Заключение
  • Литература
  • *** Примечания ***